30498

Многочлены. Кольцо многочленов над кольцом с единицей. Делимость многочленов, теорема о делении с остатком. Значение и корень многочлена. Теорема Безу

Доклад

Математика и математический анализ

о делении мннов: 2ух мннов f и g≠0 мнны q и r такие что f=qgr причем или r=0 или degr degg.degrx degx а degx=1 degrx=0. Доказательство: Поделим с остатком многочлен fx на многочлен x: fx=xqxrx Так как degrx degx а degx=1 то rx многочлен степени не выше 0 т. Докво: единственность пусть где или deg degg то откуда следует но deg degg .

Русский

2013-08-24

57.56 KB

24 чел.

Многочлены. Кольцо многочленов над кольцом с единицей. Делимость многочленов, теорема о делении с остатком. Значение и корень многочлена. Теорема Безу.

НА ДОСКЕ:

[Многочлен]

, где

[Кольцо многочленов над кольцом с единицей]

К- кольцо, если:

  1.  a+b=b+a, a,bK
  2.   (a+b)+c=a+(b+c), a,bK
  3.  а+0=0+а=а.
  4.  a+b=b+a=0.
  5.   (a*b)*c=a*(b*c), a,bK
  6.  a*(b+c)=a*b+a*c; (a+b)*c=a*c+b*c, a,b,cK.

  1.  если a*b=b*a, a,bK, то К-коммут.
  2.  если К-коммут. и  : а*е=е*а=а , аK, то К-коммут. кольцо с 1.

[Делимость многочленов, теорема о делении с остатком]

 f(x)=a0+a1x+a2x2+...+an-1xn-1+anxn 

Тh. (о делении мн-нов):  2-ух мн-нов f и g≠0  мн-ны q и r такие, что f=qg+r, причем или r=0 или deg(r)<deg(g).

[Значение и корень многочлена. Теорема Безу]

с-корень f(х), если f(c)=0.

Тh (Безу). r(x)=f(x)/(x-a)=f(a).

Д-во:

f(x)=(x-a)q(x)+r(x)

Т.к.deg(r(x))<deg(x-a), а deg(x-a)=1,  deg(r(x))=0.

x=a f(x). Т.к. (a-a)q(a)=0, то f(a)=r(a).

ВЫСТУПЛЕНИЕ:

Многочлен (или полином) от n переменных — это конечная формальная сумма вида

,

где есть набор из целых неотрицательных чисел (называется мультииндекс),  — число (называемое «коэффициент многочлена»), зависящее только от мультииндекса I.

В частности, многочлен от одной переменной есть конечная формальная сумма вида

где фиксированные коэффициенты, а  — переменная.

Степенью многочлена называется максимальная из степеней его одночленов, тождественный нуль не имеет степени.

Кольцо многочленов над кольцом с единицей.

Кольцо многочленов - кольцо, элементами которого являются многочлены с коэффициентами из некоторого фиксированного поля К.

Непустое множество К вместе с 2-мя бинарными операциями «+» и «*» наз. кольцом, если:

  1.  «+» - коммутативная операция
  2.  «+» - ассоциативная операция
  3.  существует нейтральный элемент относительно сложения
  4.  существует обратный элемент относительно сложения
  5.  «*» - ассоциативная операция
  6.  «*»–дистрибутивна относительно «+»

Кольцо К наз. коммутативным, если «*»  – коммут. операция, т.е. a*b=b*a, a,bK.

Если К – коммутативное кольцо и существует элемент е такой, что а*е=е*а=а , аK, то К называется коммутативным кольцом с единицей.

Полем наз. коммут. кольцо с единицей, в котором каждый ненулевой элемент обратим (элемент а обратим, если для него найдется b такой что: a*b=b*a=e).

Делимость многочленов, теорема о делении с остатком.

Выражение f(x)=a0+a1x+a2x2+...+an-1xn-1+anxn наз. многочленом степени n.

Теорема (о делении мн-нов): 2-ух мн-нов f и g≠0 найдутся и единственные мн-ны q и r такие, что f=qg+r, причем или остаток r=0 или степень(r) меньше степени(g).

Многочлен, который можно представить в виде произведения многочленов низших степеней с коэффициентами из данного поля, называется приводимым (над данным полем), в противном случае — неприводимым.

Вообще, каждый многочлен от одного переменного разлагается в поле вещественных чисел на множители первой и второй степени, в поле комплексных чисел — на множители первой степени (основная теорема алгебры: Всякий отличный от константы многочлен с комплексными коэффициентами имеет по крайней мере один корень в поле комплексных чисел).

Значение и корень многочлена. Теорема Безу.

Значение многочлена – это число, которое получается при подстановке вместо переменной константы. Число с наз. корнем многочлена f(х), если f(c)=0.

Теорема Безу утверждает, что остаток от деления многочлена f(x) на двучлен (x-a) равен f(a).

Предполагается, что коэффициенты многочлена содержатся в некотором коммутативном кольце с единицей (например, в поле вещественных или комплексных чисел).

Доказательство:

Поделим с остатком многочлен f(x) на многочлен (x-a):

f(x)=(x-a)q(x)+r(x)

Так как  deg(r(x))<deg(x-a), а deg(x-a)=1,  то r(x) — многочлен степени не выше 0, т.е. константа. Подставляем x=a в f(x). поскольку (a-a)q(a)=0, то имеем f(a)=r(a). Ч.т.д.

Основное следствие: Число a является корнем многочлена f(x) тогда и только тогда, когда f(x) делится без остатка на двучлен (x-a).

Теорема Безу и следствия из неё позволяют легко находить рациональные корни полиномиальных уравнений с рациональными коэффициентами.

ДОПОЛНИТЕЛЬНО:

Теорема о делении с остатком.

Док-во:

 (единственность), пусть , где или deg()<deg(g), то , откуда следует , но deg() < deg(g) . А так как, если  , то степень deg()deg(g), а это невозможно, поэтому и тогда .

(существование): индукцией по степени f .  Если deg(f)<deg(g), то f=0g+f  предполагаем, что . Пусть deg(f) deg(g),  , mn. Рассмотрим его степень строго меньше < deg(f) по предположению индукции он равен откуда , и deg(r)<deg(g). Ч.т.д.

Следствия из теоремы Безу:

  1.  Число a является корнем многочлена f(x) тогда и только тогда, когда f(x) делится без остатка на двучлен (x-a).
  2.  Свободный член многочлена делится на любой целый корень многочлена с целыми коэффициентами (если старший коэффициент равен 1, то все рациональные корни являются и целыми).
  3.  Пусть α — целый корень приведённого многочлена A(x) с целыми коэффициентами. Тогда для любого целого k число A(k) делится на α-k.


 

А также другие работы, которые могут Вас заинтересовать

81083. Влияние водного режима на качественный и количественный состав флавоноидов календулы 114.12 KB
  Одним из активно изучаемых классов защитных веществ растений являются фенольные соединения. внедрение в геном чудеродных для данного вида генов с целью получения трансгенных растений источников биологически активных соединений в частности флавоноидов...
81084. ЗЛОУПОТРЕБЛЕНИЕ СУБЪЕКТИВНЫМИ ГРАЖДАНСКИМИ ПРАВАМИ НА ПРИМЕРЕ КОРПОРАТИВНЫХ ПРАВООТНОШЕНИЙ 172.47 KB
  Актуальность темы дипломной работы обусловлена необходимостью решения одной из самых неоднозначных проблем гражданского права - злоупотребления правом на примере корпоративных правоотношений. Необходимо отметить, что правоприменительная практика сталкивается с большим количеством корпоративных...
81085. ФЕМИНИСТИЧЕСКАЯ ТЕОЛОГИЯ КОНЦА 20-ГО ВЕКА В ПОИСКАХ МЕТОДОЛОГИИ 266 KB
  В период раннего капитализма традиционная точка зрения на положение женщины в обществе подвергается пересмотру: впервые говорится о различии в общественной сфере занятости необходимости строгого разграничения частного и общественного.
81087. ПРИОРИЕТЫ БЮДЖЕТНО-НАЛОГОВОЙ ПОЛИТИКИ РФ 45.51 KB
  Полнота бюджета, как правило, прямо пропорциональна благосостоянию граждан. Бюджет, его формирование и статьи расходов являются важным разделом в экономической науки, требующим большого внимания со стороны не только занимающих высокие посты экономистов и политиков, но и рядовых граждан.
81088. Электронные выпрямители, преобразователи, защита электронных устройств и основные характеристики 468.06 KB
  Инвертор который формирует частоту напряжения электродвигателя. Преобразователи частоты различаются по режиму коммутации используемому для регулирования напряжения питания электродвигателя.
81089. СОЗДАНИЕ ГОСУДАРСТВЕННОГО СТАНДАРТА ISO 21500:2012 30.93 KB
  Задачей рабочей группы по созданию стандарта было взять за основу опыт существующих организаций по управлению проектами (Института управления проектами PMI (США), Британского института стандартизации BSI и Международной ассоциации управления проектами IPMA) и свести его в лучшую практику – универсальный стандарт.
81090. Изменения в системе государственного управления при правлении Ивана III 50 KB
  Иван III заложил основы российского самодержавства не только значительно расширив территорию своего государства но и укрепив его политический строй государственный аппарат резко возвысив международный престиж Москвы. Иван III явился фактическим создателем Московского государства.
81091. Разработки и построение моделей социальных процессов для определения сущности, областей применения и наиболее эффективных методов моделирования 23.61 KB
  Актуальность темы состоит в том что в настоящее время нельзя назвать область человеческой деятельности в которой в той или иной степени не использовались бы методы моделирования. Остановимся на философских аспектах моделирования а точнее общей теории моделирования. Методологическая основа моделирования.