30523

Модель системы безопасности HRU. Основные положения модели. Теорема об алгоритмической неразрешимости проблемы безопасности в произвольной системе

Доклад

Математика и математический анализ

Теорема об алгоритмической неразрешимости проблемы безопасности в произвольной системе На доске множество исходных объектов O o1 o2 oM ; множество исходных субъектов S s1 s2 sN при этом S ⊆ O множество прав доступа субъектов к объектам R матрицей доступа каждая ячейка которой специфицирует права доступа к объектам из конечного набора прав доступа R r1 r2 rK т . Классическая Дискреционная модель реализует произвольное управление...

Русский

2013-08-24

111.25 KB

36 чел.

Модель системы безопасности HRU. Основные положения модели. Теорема об алгоритмической неразрешимости проблемы безопасности в произвольной системе

На доске

- множество исходных объектов  O ( o1,  o2, …,  oM );

- множество  исходных  субъектов  S  (s1,  s2, …,  sN ) ,  при   этом S    O

- множество прав доступа субъектов к объектам R

 -матрицей  доступа  A,  каждая  ячейка   которой  специфицирует  

права  доступа  к  объектам   из   конечного  набора   прав   доступа  R ( r1,  r2, …,  rK ) ,  т .  е.

 A[s ,  o ]     R.

Ответ

Основные положения модели

Модель HRU (Харрисона – Руззо - Ульмана) используется для анализа системы защиты, реализующей дискреционную политику безопасности, и ее основного элемента - матрицы доступов. При этом система защиты представляется конечным автоматом, функционирующим согласно определенным правилам перехода.

Модель HRU была впервые предложена в 1971 г. В 1976 г. появилось формальное описание модели. Классическая Дискреционная модель реализует произвольное управление доступом субъектов и объектов и контроль за распространением прав доступа. В рамках этой модели система обработки информации представляется в виде совокупности активных сущностей субъектов / множество s/; которые осуществляют доступ к информации; пассивных сущностей объектов /множество о/, содержащих защищаемую информацию; конечного множества привилегированного доступа /множество R/, означающих полномочия на выполнение соответствующих действий

Права  доступа  ri ,  размещаемые   в  ячейках  матрицы   доступа  A[s ,  o ], определяют  совокупность   допустимых ( разрешенных )  операций  над  объектом  из   полного набора  возможных  операций над объектами .  Заметим   также ,  что  модель  HRU  несколько  отличается   от     субъектно- объектной  модели  КС,  представляя  субъектов доступа "активизированными "  состояниями   некоторого   подмножества

объектов   системы  ( т .  е .  S     O),  что,  с   одной   стороны ,  огрубляет  саму  суть  

субъектов  доступа,  но,  с  другой   стороны   позволяет  ввести   понятие  доступа

субъекта   к субъекту .

2. Функционирование  системы   рассматривается  исключительно   с  точки  

зрения   изменений   в  матрице  доступа.  Возможные  изменения  опреде -

ляются  шестью примитивными  операторами Op :

-   Enter  r   into  A[s ,o ] –  ввести  право r   в  ячейку   A[s ,o ];

-   Delete  r   from  A[s ,o ] – удалить право r   из  ячейки  A [s ,o ];

-   Create subject   s    – создать  субъект  s   ( т .  е.  новую   строку   матрицы A);

-   Create object  o   –  создать  объект   o   ( т .  е.  новый   столбец  матрицы A);  

-   Destroy subject   s   – уничтожить субъект s ;

-   Destroy object    o   –  уничтожить объект  o .

 В  результате   выполнения  примитивного  оператора  осуществляется  

переход КС из   состояния Q = (S ,  O,  A)  в новое состояние  Q'= (S' ,O' , A' ).  

Каждое  состояние  системы   Qi  является   результатом  выполнения  некоторой  команды    α l

,  применимой  по  ее   условиям  к  предыдущему  состоянию  Qi  -1  

Qi = α l( Qi  -1),и   определяет   отношения   доступа,  которые   существуют  между   сущностями

системы  в  виде   множества  субъектов,  объектов  и  матрицы  прав  доступа.

Анализ безопасности моноопера-ционных систем ХРУ

Системы защиты КС должны строиться на основе формальных моделей (согласно ГОСТ Р ИСО/МЭК 15408). Соответствие системы защиты требованиям заданной политики безопасности должно быть теоретически обосновано с использованием формальных моделей. Для решения этой задачи необходим алгоритм такой проверки.

Возможно ли построение такого алгоритм для модели ХРУ?

Будем считать, что в состоянии q системы ХРУ возможна утечка права доступа r R в результате выполнения команды c(x1,...,xk), если при пере-ходе qc(x1,…,xk) q’ выполняется примитивный оператор, вносящий право r в ячейку матрицы доступов M, до этого r не содержавшую.

Начальное состояние q0 системы ХРУ называется безопасным относительно некоторого права доступа r R, если невозможен переход системы в такое состояние q, в котором возможна утечка права доступа r.

Рассмотрим класс систем ХРУ, для которых существует алгоритм проверки безопасности.

Система ХРУ называется монооперационной, если каждая ее команда содержит один примитивный оператор.

Следствие.

Алгоритм проверки безопасности монооперационных систем ХРУ имеет экспоненциальную сложность.

Если число операций алгоритма зависит от размера входных дан-ных как экспонента (cn),  где n – размерность входа, то говорят, что алгоритм имеет экспоненциальную сложность.

В таком алгоритме при увеличении размерности входа НА 1 (напри-мер, при добавлении в матрицу доступов одного объекта), время выполнения увеличивается В с раз.  

Экспоненциальные алгоритмы считаются НЕЭФФЕКТИВНЫМИ.

Представление произвольной ХРУ машиной Тьюринга.

Рассмотрим вопрос проверки безопасности произвольной ХРУ. Для этого представим систему ХРУ машиной Тьюринга.

Машина Тьюринга (детерминированная) представляет собой бесконечную в обе стороны ленту, разбитую на ячейки и управляющее устройство (УУ).

УУ находится в одном из состояний. Множество состояний УУ конечно.

УУ может перемещаться влево и вправо по ленте, читать и записывать в ячейки символы некоторого конечного алфавита. В начальный момент времени все ячейки, кроме тех, в которых записаны символы входного алфавита, пусты.

УУ работает согласно правилам перехода. Каждое правило перехода предписывает машине, в зависимости от текущего состояния и наблюдае-мого в текущей клетке символа, записать в эту клетку новый символ, пе-рейти в новое состояние и переместиться на одну клетку влево или впра-во. Некоторые состояния машины Тьюринга могут быть помечены как терминальные, и переход в любое из них означает конец работы, остановку алгоритма.

Таким образом, машина Тьюринга (МТ) определена четверкой (A,Q,D,C), где A={a0, a1, …, am} — внешний алфавит (a0=۸ - пустой символ);

Q={q0,q1,...,gk} — внутренний алфавит (множество состояний УУ);

D={r, l, e} — множество действий (r — вправо, l — влево, e — не переме-щаться);

С:QxA->QxAxD — функция, задающая команды МТ.

Например, команда С(x,qi)=(y,qk,r) означает, что если УУ находится в состоянии qi в ячейке, содержащей символ x, то следует записать в эту ячейку символ y, сменить состояние УУ на qk и переместиться на 1 ячейку вправо.

Теорема об алгоритмической неразрешимости проблемы безопасности в произвольной системе

Пусть Z(Px) – другая МТ, причем

и пусть ее заключительные команды qi 1!, qj 0 !.

Построим AТ Z’:

1) добавим новое состояние qkQz.

2) определим команды qi 1  qk 1 r, qk qk  r (бесконечное движение вправо).

Тогда новая МТ Z’ ведет себя так:

Но если Z’ самоприменима, то она по определению не может зациклиться!

Пришли к противоречию. Следовательно, проблема самоприменимости – алгоритмически неразрешима.


 

А также другие работы, которые могут Вас заинтересовать

37279. ПРИМЕНЕНИЕ ТЕХНОЛОГИЙ JAVA И JAVAFX ДЛЯ РАЗРАБОТКИ ВИРТУАЛЬНЫХ ЛАБОРАТОРИЙ МАТЕМАТИЧЕСКОГО МОДЕЛИРОВАНИЯ 912.5 KB
  Методы моделирования в настоящее время внедрились практически во все сферы человеческой деятельности: технические, социально-экономические, сложные экономические, общественные, сферы международных отношений и др. Это связано с необходимостью расширения и углубления знаний реального мира. Существует множество реальных объектов и процессов, информацию о которых мы не можем получить из-за малости или масштабности размеров (объекты микро- и макрокосмоса); высоких или криогенных температур.
37281. Бухгалтерский и налоговый отчет в компании ООО «Экопласт» 423 KB
  Эти взаимоотношения основаны на различных денежных расчетах в процессе заготовления производства и реализации продукции товаров работ или услуг. Учет поступления товаров Дадим определение товаров на основании нормативных документов применяемых в Российской Федерации. Все операции куплипродажи товаров осуществляются на основании договора куплипродажи и его разновидностей договор поставки договор розничной куплипродажи и т. Основными целями бухгалтерского учета товарных операций является: своевременное и полное отражение на счетах...
37282. История отечественного государства и права. Часть 1 1.98 MB
  ЛОМОНОСОВА История отечественного государства и права. ВВЕДЕНИЕ История отечественного государства и права есть закономерная смена типов и форм государства а также правовых систем на территории нашей Родины. Как историческая наука история государства и права часть истории человечества тесно связанная с историей народного хозяйства культуры и других отраслей человеческой деятельности но в то же время сохраняющая относительную самостоятельность и обладающая четко выраженным объектом исследования. Однако прежде всего история государства и...
37284. Система управления частоты вращения турбины построенная на центробежном датчике 1.06 MB
  2Система управления частоты вращения турбины построенная на центробежном датчике. На рисунке5 показана принципиальная схема системы управления скоростью вращения паровой турбины. Центробежный датчик создает механическое перемещение плунжера золотника зависящее от скорости вращения турбины Так как на выходе этого датчика сила и перемещение невелики то чтобы по лучить мощность достаточную для управления клапаном регулирующим расход пара к турбине его нужно усилить с помощью...
37285. МЕТОДИЧНІ ВКАЗІВКИ ПО ВИРІШЕННЮ ЗАДАЧ З МЕХАНИКИ ТА МОЛЕКУЛЯРНОЇ ФІЗИКИ 4.36 MB
  Кінематика поступального руху матеріальної точки Закон руху матеріальної точки вважається заданим якщо можна визначити положення точки в будьякий момент часу в даній системі відліку. Головна задача кінематики: знаючи закон руху точки визначити всі кінематичні величини які характеризують її рух. Зворотня задача кінематики: за кінематичними характеристиками руху визначити закон руху точки. В кинематиці закон руху точи задається одним з трьох способів.
37286. Автогенератор с автотрансформаторной обратной связью 815.67 KB
  Коэффициент обратной связи на резонансной частоте 8. Поэтому коэффициент обратной связи оказался независимым от частоты что справедливо при относительно невысоких частотах в половину меньших граничной частоты транзистора. С повышением частоты схема замещения автогенератора усложняется и коэффициент обратной связи должен рассматриваться с учетом перечисленных факторов. Амплитуда генерируемых колебаний определяется из уравнения баланса амплитуд Регулировка амплитуды колебаний производится изменением величины коэффициента обратной...
37287. Особенности ведения и учета налога на прибыль бюджетными организациями 432.5 KB
  Налоговый учет осуществляется для формирования полной и достоверной информации о порядке учета для целей налогообложения хозяйственных операций, осуществленных налогоплательщиком в течение отчетного (налогового) периода, а также обеспечения информацией внутренних и внешних пользователей для контроля за правильностью исчисления, полнотой и своевременностью исчисления и уплаты в бюджет налога.