3054

Обробка даних вимірювань. Апроксимація та інтерполяція даних

Лабораторная работа

Информатика, кибернетика и программирование

Обробка даних вимірювань. Апроксимація та інтерполяція даних. Мета: Вивчити процедури для апроксимації та інтерполяції даних в системі MathCad. Завдання. Побудувати апроксимаційний поліном 1-го степеня за методом найменших квадратів. Значення...

Украинкский

2012-11-12

188 KB

14 чел.

Обробка даних вимірювань. Апроксимація та інтерполяція даних.

Мета: Вивчити процедури для апроксимації та інтерполяції даних в системі MathCad.

Завдання.

  1.  Побудувати апроксимаційний поліном 1-го степеня за методом найменших квадратів. Значення аргумента  та функції  задані в таблиці. За отриманими результатами побудувати графік функції  . Завдання виконати в середовищі Microsoft Excel

 

Варіанти завдань:

1)

x

18,18

20,40

25,54

31,41

36,75

42,51

48,04

y

86,00

86,67

87,95

90,18

90,92

92,92

94,43

2)

x

10,36

20,08

12,30

32,62

15,50

44,91

51,19

y

45,67

86,63

87,87

90,03

67,34

92,59

93,97

3)

x

18,54

21,20

27,03

28,50

40,25

23,50

35,13

y

85,98

47,90

87,79

89,89

90,47

65,45

93,50

4)

x

18,72

21,60

27,78

35,03

42,00

49,72

54,47

y

85,98

80,78

87,71

70,78

90,24

91,92

93,04

5)

x

19,08

22,40

29,26

37,45

45,50

54,54

63,76

y

85,96

86,49

87,55

89,45

86,49

85,96

93,04

6)

x

18,90

22,00

28,52

36,24

43,75

52,13

60,61

y

85,97

86,53

87,63

89,60

90,01

91,58

92,57

7)

x

19,26

20,01

25,89

38,66

47,25

56,94

66,90

y

85,95

70,00

87,48

79,89

89,55

89,00

91,64

8)

x

19,44

23,20

30,75

39,86

49,00

59,35

70,04

y

85,95

70,00

87,48

79,89

89,55

89,00

91,18

9)

x

19,62

23,60

31,50

41,07

50,75

61,75

73,19

y

45,67

86,63

87,87

90,03

67,34

92,59

93,97

10)

x

19,80

24,00

32,24

42,28

52,50

64,16

76,33

y

85,92

70,00

87,24

50,00

88,87

80,00

90,25

11)

x

19,98

24,40

32,98

43,49

54,25

66,57

79,47

y

85,92

65,00

87,24

65,00

88,87

80,67

90,25

12)

x

20,16

24,80

33,73

44,70

56,00

68,97

82,62

y

85,70

86,28

87,08

88,59

88,42

89,23

85,70

13)

x

20,34

25,20

34,47

45,90

57,75

71,38

85,76

y

30,50

15,60

45,80

100,89

120,76

35,80

40,20

14)

x

20,52

25,60

35,22

47,11

59,50

73,78

88,90

y

35,12

18,90

43,25

99,90

97,98

79,98

85,90

15)

x

20,70

26,00

35,96

48,32

61,25

76,19

92,04

y

85,88

18,90

86,84

99,90

97,98

88,82

85,90

16)

x

20,88

26,40

36,40

49,53

63,00

78,60

95,119

y

45,67

86,63

87,87

90,03

67,34

92,59

93,97

17)

x

21,06

26,80

37,45

50,74

64,75

81,00

98,33

y

85,86

86,11

86,68

87,86

87,28

87,55

86,99

18)

x

21,24

27,20

38,19

51,94

66,50

83,41

101,47

y

85,86

86,08

86,60

87,42

85,00

87,22

86,53

19)

x

21,42

27,60

38,94

53,15

68,25

85,81

104,62

y

85,86

86,04

86,52

87,57

86,82

87,22

86,06

20)

x

21,60

28,00

39,68

54,36

70,00

88,22

107,76

y

85,84

86,01

86,45

87,43

86,59

86,55

90,00

21)

x

21,78

28,40

35,00

40,78

45,99

80,67

90,67

y

85,83

85,97

86,37

87,29

86,36

78,65

102,89

22)

x

21,96

28,80

41,17

56,78

73,50

93,03

114,05

y

85,81

85,56

86,22

87,29

86,36

78,63

102,89

23)

x

22,14

29,20

41,91

57,98

75,25

95,44

117,19

y

85,67

85,56

86,21

87,29

86,33

78,63

101,54

24)

x

22,32

29,60

42,66

59,19

77,00

97,84

120,33

y

85,80

85,87

86,13

86,85

85,68

85,20

89,77

25)

x

22,50

30,00

43,40

60,40

78,25

100,25

123,47

y

85,79

85,53

86,05

86,71

85,45

84,87

88,71

26)

x

22,68

30,40

44,14

61,61

80,50

102,65

126,62

y

85,79

85,80

85,97

85,56

85,23

84,53

88,69

27)

x

22,86

30,80

44,89

62,82

82,25

105,06

129,76

y

85,78

85,76

85,89

86,42

85,00

84,20

95,66

28)

x

23,04

31,20

45,63

64,02

84,00

107,47

132,90

y

85,77

85,73

85,81

86,27

84,77

83,86

100,88

29)

x

23,22

31,60

46,38

65,23

85,75

109,87

136,05

y

85,76

85,69

85,73

86,13

84,54

85,52

99,77

30)

x

23,40

32,00

47,12

66,44

87,50

112,28

139,19

y

85,76

85,66

85,73

85,98

84,54

83,19

99,77

Вказівки до виконання завдання

Приклад . В таблицю 1 занесені дані обстеження 11 студентів (зріст і вага).

Таблиця 1

X

(зріст, м)

1.62

1.78

1.66

1.60

1.72

1.64

1.80

1.68

1.76

1.70

1.74

Y

(вага, кг)

62

82

64

58

79

61

81

72

74

68

76

Необхідно встановити тісноту та тип зв’язку між зростом та вагою студентів.

Розв’язання

Нанесемо експериментальні дані на координатну площину x0y і отримаємо поле розсіювання (рис. 1). Коли точки з’єднати прямими лініями, то отримаємо ламану лінію, по вигляду якої можна зробити висновок, що залежність між зростом (X) та вагою (Y) є прямолінійною (експериментальні точки розміщені вздовж прямої) і рівняння регресії матиме вигляд .

Рис. 1. Поле розсіювання, графіки лінії регресії (y) та ліній смуги довіря ( та ).

В таблицю 4 запишемо відсортовані в порядку зростання X значення експериментальних даних Y (графи 2 і 3) та проведемо необхідні обчислення.

Таблиця 2

1

2

3

4

5

6

7

8

9

10

11

12

1

1.60

58

-0.10

0.0100

-12.636

159.678

1.264

5.493

0.243

55.523

61.463

2

1.62

62

-0.08

0.0064

-8.636

74.587

0.691

60.921

1.164

57.951

63.891

3

1.64

61

-0.06

0.0036

-9.636

92.860

0.578

63.349

5.519

60.379

66.319

4

1.66

64

-0.04

0.0016

-6.636

44.041

0.265

65.777

3.159

62.807

68.747

5

1.68

72

-0.02

0.0004

1.364

1.860

-0.027

68,205

14.399

65.235

71.175

6

1.70

68

-0.00

0.0000

-2.636

6.950

0.000

70.633

6.935

67.663

73.603

7

1.72

79

0.02

0.0004

8.364

69.950

0.167

73.061

35.266

70.091

76.031

8

1.74

76

0.04

0.0016

5.364

28.769

0.215

75.489

0.261

72.519

78.459

9

1.76

74

0.06

0.0036

3.364

11.364

0.202

77.918

15.347

74.948

80.888

10

1.78

82

0.08

0.0064

11.364

129.132

0.909

80.346

2.737

77.376

83.316

11

1.80

81

0.10

0.0100

10.364

107.405

1.036

82.774

3.146

79.804

85.744

18.7

777

––

0.044

––

726.546

5.3

––

88.187

––

––

За алгоритмом МНК знайдемо значення потрібних величин, використовуючи значення сум, отриманих в таблиці 4 і зробимо висновки:

  1.  знаходимо середні значення масивів X і Y:
  2.  знаходимо середньоквадратичні вибіркові відхилення:

  1.  знаходимо коефіцієнт коваріації:
  2.  знаходимо коефіцієнт кореляції:
  3.  знаходимо коефіцієнти рівняння регресії:

  1.  знаходимо теоретичні значення змінної Y (графа 9):
  2.  знаходимо середньоквадратичне відхилення між експериментальними та теретичними значеннями змінної Y:  
  3.  знаходимо значення ліній смуги довір’я (графа 11 і 12):

  1.  знаходимо інтервал смуги довіря:

Висновок. Зв’язок між зростом (X) і вагою (Y) прямий (r=0.94>0), тобто чим вища людина, тим більша у неї вага, і сильний (2/3r<1). Вагу людини (Y) за зростом (X) можна визначити за формулою , і ця вага може коливатись в межах 2.97 кг.

  1.  Побудувати апроксимаційний поліном 1-го степеня . Значення x та y задані у завданні №1. Побудувати в одному графічному вікні графіки заданої дискретно функції і графік отриманої функції . Завдання виконати в середовищі MathCad. Порівняти отримані результати з результатами, отриманими в завданні 1.

Вказівки до виконання завдання

Теоретичні відомості. Функції MathCad, які використовуються при розрахунках лінійної регресії:

  1.  line(x,y)вектор із двох елементів (b,a) коефіцієнтів рівняння лінійної регресії
  2.  intercept(x,y) – коефіцієнт b рівняння лінійної регресії
  3.  slope(x,y) - коефіцієнт a рівняння лінійної регресії

Тут x –вектор дійсних даних аргументу, y – вектор дійсних даних того ж розміру.

В системі MathCad є два дублюючих один одного способи для розрахунку лінійної регресії.

1-й спосіб.

Приклад.

2-й спосіб.

Приклад.

Поліноміальна регресія

Поліноміальна регресія означає наближення даних  поліномом к-го степеня

При к=1 – пряма лінія, к=2 – парабола, к=3 – кубічна парабола і т.д. (к<5).

В системі MathCad поліноміальна регресія здійснюється за допомогою комбінації функцій regress та поліноміальної регресії даних interp :

1) regress(x,y,k)- вектор коефіцієнтів для побудови поліноміальної регресії даних

2) interp(s,x,y,t) – результат поліноміальної регресії

Тут :

 s=regress(x,y,k)

 x – вектор дійсних даних аргумента, розташованих в порядку зростання

 y- вектор дійсних даних значень того ж розміру

 k степінь полінома регресії

 t значення аргумента

Приклад поліноміальноі регресії квадратичною та кубічною параболами.

  y

84

80

76

72

68

64

60

56

0    1.60    1.62    1.64    1.66    1.68     1.70    1.72    1.74     1.76    1.78    1.80     1.82    x 


 

А также другие работы, которые могут Вас заинтересовать

47221. Презентация археологии Челябинского государственного университета в региональной и корпоративной прессе (1976-2010 гг.) 125.23 KB
  Для проведения данного исследования были привлечены газета Челябинской области Вечерний Челябинск молодежная газета Челябинска Комсомолец и общественнополитическая региональная газета Челябинский рабочий а также корпоративная пресса представленная газетой Челябинского государственного университета Челябинский университет. Цель исследования заключается в том чтобы представить образ археологии сложившийся в наиболее распространенных челябинских газетах в период с 1976 по 2010 год а также проследить развитие археологии в...
47222. Бухгалтерский учет и аудит 572 KB
  Выбор темы оформляется путем подачи студентом заявления на имя зав. кафедрой (Приложение Б). Студент может сам предложить тему дипломной работы. В этом случае он должен обратиться к заведующему кафедрой с письменным заявлением
47223. Розробка технології виконання зачіски, стрижки, фарбування 725.12 KB
  Так сукня з декольте всетаки вимагає високої зачіски хоча можна поекспериментувати і зі стилем ретро для розпущених волоссяхвилясті локони укладені чітко по лінії особи ідеальні для декольте. Збираємо волосся назад як для хвоста гарненько перекручуємо проти годинникової стрілки і обертаємо вздовж потилиці і навколо пальця в джгут тепер ховаємо кінці волосся в шов і закріплюємо мушлю шпильками. Деякі дівчата чомусь упевнені що вечірні зачіски на випускнийможливі...
47224. Недвижимость как объект гражданских прав 1.07 MB
  Ульянова юридический факультет кафедра гражданского права и процесса Допущена к защите: зав. Недвижимое имущество как объект гражданского права РФ. Особенности элементноструктурных отношений в недвижимом имущественном комплексе Заключение Библиографический список ВВЕДЕНИЕ Актуальность выбранной темы выпускной квалификационной работы определяется тем что на данный момент вопросы правового положения недвижимого имущества как объекта гражданского права приобрели особую востребованность.Возникновение и развитие недвижимости как объекта...
47226. Оформлення дипломних (курсових) робіт. Вимоги і коментарі 432.5 KB
  Галузь застосування Оформлення дипломних курсових робіт: Вимоги і коментарі мають силу стандарту організації та поширюються на дипломні і курсові роботи які пишуть та захищають в Гуманітарному університеті...
47227. Система автоматичного регулювання та контролю температури в жилому приміщенні 582 KB
  Для визначення ефективності роботи підприємства визначимо кількісний склад витрат які формують собівартість одиниці продукції. Сума амортизаційних нарахувань розраховується за формулою...
47228. Экологизация школьного курса географии в аспекте загрязнения гидросферы 115.5 KB
  Загрязнение воды в настоящее время является проблемой угрожающей всему человечеству. Обеззараживание питьевой воды проводится для уничтожения в загрязненной воде используемой человеком возбудителей заболеваний передающихся водным путем и для предупреждения передачи кишечных инфекций через воду. С питьевой водой в организм человека могут попасть всевозможные микробы возбудители многих инфекционных и паразитарных заболеваний: холера брюшной тиф дракункулез лямблиоз вирусный гепатит полиомиелит дизентерия сальмонеллезы шистосомозы и...
47229. Цифровые лаборатории как средство современного школьного химического образования 362.97 KB
  Компьютерные модели в обучении химии. Компьютерные модели макромира. Компьютерные модели в обучении химии Среди различных типов педагогических программных средств многие авторы особо выделяют те в которых используются компьютерные модели.