30558

Теорема о среднем для действительных функций одного действительного переменного. Теорема Ферма; теорема Ролля, теорема Лагранжа. Примеры, показывающие существенность каждого условия в теореме Ролля: теоретическая интерпретация

Доклад

Математика и математический анализ

Все вышеперечисленные теоремы являются основными теоремами дифференциального исчисления поэтому сначала введем понятие дифференцируемости функции. Понятие дифференцируемости функции. Выражение ∆x называется дифференциалом функции fx в точке x0 соответствующим приращению аргумента ∆x и обозначается символом dy или dfx0. При этом приращение функции ∆y определяется главным образом первым слагаемым т.

Русский

2013-08-24

91.81 KB

28 чел.

Теорема о среднем для действительных функций одного действительного переменного. Теорема Ферма; теорема Ролля, теорема Лагранжа. Примеры, показывающие существенность каждого условия в теореме Ролля: теоретическая интерпретация.

Кажется, немного не правильно сформулирован вопрос.

 Теоремы о среднем для действительных функций одного действительного переменного: теорема  Ферма, теорема Ролля, теорема Лагранжа. Примеры, показывающие существенность каждого условия теоремы Роля: теоретическая интерпретация. Вот так кажется вернее будет.

Рисовать на доске будем Рис. 1-4

В основную часть формулировки.

В дополнение пойдут доказательства.

Все вышеперечисленные теоремы являются основными теоремами дифференциального исчисления, поэтому сначала введем понятие дифференцируемости функции.

 Понятие дифференцируемости функции.

Пусть, как и раньше, функция y=f(x) определена на интервале (a;b). Рассмотрим значение аргумента  x0  a;b). Дадим аргументу приращение ∆x 0, так чтобы выполнялось условие (x0+∆x) a;b). При этом функция получит приращение   ∆y= f(x+∆x) ─ f(x).

Функция y=f(x)  называется дифференцируемой в точке x0, если её приращение в этой точке можно представить в виде

    ∆y=A ∆x + o(∆x),

где  A -  некоторая постоянная,  а  o(∆x) – величина более высокого порядка малости, чем ∆x,  т.е.     = 0.  Выражение  A ∆x  называется дифференциалом функции f(x) в точке x0, соответствующим приращению аргумента ∆x, и обозначается  символом dy или df(x0). При этом приращение независимой переменной ∆x  называется дифференциалом аргумента и обозначается символом dx. В соответствии с этими обозначениями можно записать:   dy = A dx.   Если A≠0, то при ∆ x→0  второе слагаемое, т.е. o(∆x), является величиной более высокого порядка малости, чем первое слагаемое (A ∆x).  При этом приращение функции  ∆y определяется, главным образом, первым слагаемым, т.е. дифференциалом. Поэтому дифференциал называют главной частью приращения  функции. 

Свойство определенного интеграла

Если функция f(x) непрерывна на отрезке {a,b}, то на этом отрезке найдется такая точка, что справедливо следующее равенство:

Теорема  Ферма. Если функция y = f(x) определена в некоторой окрестности точки х0, принимает в этой точке наибольшее (наименьшее) в рассматриваемой окрестности значение и имеет в точке х0 производную, то f′(x0)=0.

Доказательство. Пусть f(x0) – наибольшее значение функции, то есть для любой точки выбранной окрестности выполняется неравенство f(x) ≤ f(x0). Тогда, если x < x0 ,  а если x > x0 ,  

Переходя к пределу в полученных неравенствах, находим, что из первого из них следует, что f′(x0) ≥ 0, а из второго – что f′(x0) ≤ 0. Следовательно, f′(x0) = 0.

Замечание. В теореме Ферма важно, что х0 – внутренняя точка для данного промежутка. Например, функция y = x, рассматриваемая на отрезке [0;1], принимает наибольшее и наименьшее значения соответственно при х = 1 и х = 0, но ее производная в этих точках в ноль не обращается.

Теорема Ролля. Если функция y = f(x)

  1.  непрерывна на отрезке [ab];
  2.  дифференцируема во всех внутренних точках этого отрезка;
  3.  принимает равные значения на концах этого отрезка, то есть f(a) = f(b),

то внутри интервала (ab) существует по крайней мере одна точка х = с, a < c < b, такая, что f′(c) = 0.

Доказательство.

Пусть M и m – наибольшее и наименьшее значения f(x) на [ab]. Тогда, если m = M, то f(x) = m = M – постоянная функция, и f′(x)=0 для любой точки отрезка [ab]. Если же m<M, то по теореме 16.2 хотя бы одно из значений m или M достигается во внутренней точке с отрезка [ab] (так как на концах отрезка функция принимает равные значения). Тогда по теореме Ферма f′(c) = 0.

Замечание 1. В теореме Ролля существенно выполнение всех трех условий. Приведем примеры функций, для каждой из которых не выполняется только одно из условий теоремы, и в результате не существует такой точки, в которой производная функции равна нулю.

            у                                                          у                                                        у

                                                                                                                                                                              

                     0     1           х                                      0                     х            -1     0    1    х

            Рис. 1.                                                  Рис. 2.                                           Рис. 3.

Действительно, у функции, график которой изображен на рис. 1, f(0)=f(1)=0, но х=1 – точка разрыва, то есть не выполнено первое условие теоремы Ролля. Функция, график которой представлен на рис.2, не дифференцируема при х = 0, а для третьей функции         f(-1)≠f(1).

Замечание 2. Геометрический смысл теоремы Ролля: на графике рассматриваемой функции найдется по крайней мере одна точка, касательная в которой параллельна оси абсцисс.

Теорема Лагранжа

Если функция  f(x)  непрерывна на отрезке  [a;b]  и дифференцируема во всех внутренних точках этого отрезка, то внутри отрезка   [a;b]   найдётся такая точка  c,  что для неё выполняется равенство

 

Последнее равенство носит название формулы Лагранжа или формулы конечных приращений.

Доказательство. Проведём вначале предварительные рассуждения. Секущая  AB  (рис. 7) проходит через точки    и  ,  её угловой коэффициент есть  ,  поэтому уравнение секущей  AB  имеет вид

  или

.

Обозначим выражение, стоящее в правой части этого равенства, через :

 .

Тогда секущая  AB  есть график функции . Очевидно, что  .

Введём теперь на отрезке  [a;b]  вспомогательную функцию

 .

Функции    удовлетворяет всем условиям теоремы Ролля. В самом деле, она непрерывна на отрезке  [a;b]  (как разность непрерывной функции  f(x)  и линейной функции)  и во всех внутренних точках отрезка   [a;b]   имеет производную, равную

.

Кроме того, так как   ,   то  ,   т.е.  функция    принимает равные значения на концах отрезка   [a;b].  Следовательно, согласно теореме Ролля, на отрезке  [a;b]  найдётся такая точка  c,  что .  Это значит, что  ,   т.е.  ,  откуда       .

Теорема доказана.

Обратимся к геометрическому смыслу теоремы Лагранжа. Как мы уже отметили, величина      есть угловой коэффициент секущей  AB.   В то же время    есть угловой коэффициент касательной к кривой    в точке с абсциссой  .  Таким образом, геометрически утверждение теоремы Лагранжа равносильно следующему: на дуге  всегда найдётся точка, в которой касательная параллельна хорде (рис. 4).

Отметим, что теорему Ролля можно рассматривать как частный случай теоремы Лагранжа.

B

A

C

b

ac

c

o

y

x

Рис.4


 

А также другие работы, которые могут Вас заинтересовать

236. Информационное обеспечение департамента управления министерства финансов Республики Хакасия 562.5 KB
  Структура организации (функциональные и информационные связи). План и схема развёртывания комплекса программ. Составление заявки на ремонт неисправного, а также приобретение нового и модернизацию устаревшего аппаратного оборудования серверов и рабочих станции, а также сетевого оборудования.
237. Теоретический расчет работы электродвигателя 193.34 KB
  Определение мощности и частоты вращения двигателя, общий коэффициент полезного действия. Фактическая частота вращения на валу рабочей машины, расчет зубчатых колёс редуктора. Конструктивные размеры шестерни и колеса.
238. Система электронно-цифровой подписи 648.47 KB
  Изучения руководства пользователя программы, регистрация открытых ключей и проверка подписей. Вывод названия организации и составление отчетов по запросу банк - клиент. Проверка правильности работы программы и наличия цифровой подписи.
239. Расчет показателей судна и его энергетический установки 368.5 KB
  Обоснование эксплуатационных режимов работы главных двигателей СЭУ. Выбор схемы обеспечения судна электроэнергией и теплом. Выбор режима работы главных двигателей судна. Обоснование и выбор схемы энергетического теплоснабжения.
240. Принципы расчета оплаты труда персонала предприятия 479.5 KB
  Основные принципы организации оплаты труда, состав фонда оплаты труда. Теоретические основы системы организации и оплаты труда. Направления по усовершенствованию системы оплаты труда. Совершенствования системы оплаты труда для повышения ее стимулирующий функции.
241. Разработка и реализация алгоритмов обработки данных, получаемых с помощью сканирующих нанотвердомеров семейства НаноСкан 409.92 KB
  Пользовательский интерфейс программы NanoScan Viewer. Реализация метода индентирования в НаноСкан-3Д. Апробация разработанного алгоритма на примере серии измерений твердости образца твердого сплава на основе кубического нитрида бора.
242. Конструкция и рабочие процессы авиационных двигателей 358.5 KB
  Двигатель предназначен для установки на пассажирские и транспортные самолеты. Расчет на прочность рабочей лопатки первой ступени компрессора. Определение запасов прочности лопаток. Расчет на прочность диска первой ступени компрессора.
243. Создание Windows приложения с использованием Windows Forms 401 KB
  Разработка алгоритма и программы на языке С# вычисления площади, ограниченной двумя кривыми, заданными вариантом индивидуального задания для интервала, определяемого пользователем в диалоговом режиме.
244. Привод к операционному токарному станку 8.91 MB
  Разработка рационального и технологичного привода к операционному токарному станку. Чья конструкция имела бы наибольшую экономическую эффективность и максимально соответствовала заданным техническим параметрам.