30558

Теорема о среднем для действительных функций одного действительного переменного. Теорема Ферма; теорема Ролля, теорема Лагранжа. Примеры, показывающие существенность каждого условия в теореме Ролля: теоретическая интерпретация

Доклад

Математика и математический анализ

Все вышеперечисленные теоремы являются основными теоремами дифференциального исчисления поэтому сначала введем понятие дифференцируемости функции. Понятие дифференцируемости функции. Выражение ∆x называется дифференциалом функции fx в точке x0 соответствующим приращению аргумента ∆x и обозначается символом dy или dfx0. При этом приращение функции ∆y определяется главным образом первым слагаемым т.

Русский

2013-08-24

91.81 KB

20 чел.

Теорема о среднем для действительных функций одного действительного переменного. Теорема Ферма; теорема Ролля, теорема Лагранжа. Примеры, показывающие существенность каждого условия в теореме Ролля: теоретическая интерпретация.

Кажется, немного не правильно сформулирован вопрос.

 Теоремы о среднем для действительных функций одного действительного переменного: теорема  Ферма, теорема Ролля, теорема Лагранжа. Примеры, показывающие существенность каждого условия теоремы Роля: теоретическая интерпретация. Вот так кажется вернее будет.

Рисовать на доске будем Рис. 1-4

В основную часть формулировки.

В дополнение пойдут доказательства.

Все вышеперечисленные теоремы являются основными теоремами дифференциального исчисления, поэтому сначала введем понятие дифференцируемости функции.

 Понятие дифференцируемости функции.

Пусть, как и раньше, функция y=f(x) определена на интервале (a;b). Рассмотрим значение аргумента  x0  a;b). Дадим аргументу приращение ∆x 0, так чтобы выполнялось условие (x0+∆x) a;b). При этом функция получит приращение   ∆y= f(x+∆x) ─ f(x).

Функция y=f(x)  называется дифференцируемой в точке x0, если её приращение в этой точке можно представить в виде

    ∆y=A ∆x + o(∆x),

где  A -  некоторая постоянная,  а  o(∆x) – величина более высокого порядка малости, чем ∆x,  т.е.     = 0.  Выражение  A ∆x  называется дифференциалом функции f(x) в точке x0, соответствующим приращению аргумента ∆x, и обозначается  символом dy или df(x0). При этом приращение независимой переменной ∆x  называется дифференциалом аргумента и обозначается символом dx. В соответствии с этими обозначениями можно записать:   dy = A dx.   Если A≠0, то при ∆ x→0  второе слагаемое, т.е. o(∆x), является величиной более высокого порядка малости, чем первое слагаемое (A ∆x).  При этом приращение функции  ∆y определяется, главным образом, первым слагаемым, т.е. дифференциалом. Поэтому дифференциал называют главной частью приращения  функции. 

Свойство определенного интеграла

Если функция f(x) непрерывна на отрезке {a,b}, то на этом отрезке найдется такая точка, что справедливо следующее равенство:

Теорема  Ферма. Если функция y = f(x) определена в некоторой окрестности точки х0, принимает в этой точке наибольшее (наименьшее) в рассматриваемой окрестности значение и имеет в точке х0 производную, то f′(x0)=0.

Доказательство. Пусть f(x0) – наибольшее значение функции, то есть для любой точки выбранной окрестности выполняется неравенство f(x) ≤ f(x0). Тогда, если x < x0 ,  а если x > x0 ,  

Переходя к пределу в полученных неравенствах, находим, что из первого из них следует, что f′(x0) ≥ 0, а из второго – что f′(x0) ≤ 0. Следовательно, f′(x0) = 0.

Замечание. В теореме Ферма важно, что х0 – внутренняя точка для данного промежутка. Например, функция y = x, рассматриваемая на отрезке [0;1], принимает наибольшее и наименьшее значения соответственно при х = 1 и х = 0, но ее производная в этих точках в ноль не обращается.

Теорема Ролля. Если функция y = f(x)

  1.  непрерывна на отрезке [ab];
  2.  дифференцируема во всех внутренних точках этого отрезка;
  3.  принимает равные значения на концах этого отрезка, то есть f(a) = f(b),

то внутри интервала (ab) существует по крайней мере одна точка х = с, a < c < b, такая, что f′(c) = 0.

Доказательство.

Пусть M и m – наибольшее и наименьшее значения f(x) на [ab]. Тогда, если m = M, то f(x) = m = M – постоянная функция, и f′(x)=0 для любой точки отрезка [ab]. Если же m<M, то по теореме 16.2 хотя бы одно из значений m или M достигается во внутренней точке с отрезка [ab] (так как на концах отрезка функция принимает равные значения). Тогда по теореме Ферма f′(c) = 0.

Замечание 1. В теореме Ролля существенно выполнение всех трех условий. Приведем примеры функций, для каждой из которых не выполняется только одно из условий теоремы, и в результате не существует такой точки, в которой производная функции равна нулю.

            у                                                          у                                                        у

                                                                                                                                                                              

                     0     1           х                                      0                     х            -1     0    1    х

            Рис. 1.                                                  Рис. 2.                                           Рис. 3.

Действительно, у функции, график которой изображен на рис. 1, f(0)=f(1)=0, но х=1 – точка разрыва, то есть не выполнено первое условие теоремы Ролля. Функция, график которой представлен на рис.2, не дифференцируема при х = 0, а для третьей функции         f(-1)≠f(1).

Замечание 2. Геометрический смысл теоремы Ролля: на графике рассматриваемой функции найдется по крайней мере одна точка, касательная в которой параллельна оси абсцисс.

Теорема Лагранжа

Если функция  f(x)  непрерывна на отрезке  [a;b]  и дифференцируема во всех внутренних точках этого отрезка, то внутри отрезка   [a;b]   найдётся такая точка  c,  что для неё выполняется равенство

 

Последнее равенство носит название формулы Лагранжа или формулы конечных приращений.

Доказательство. Проведём вначале предварительные рассуждения. Секущая  AB  (рис. 7) проходит через точки    и  ,  её угловой коэффициент есть  ,  поэтому уравнение секущей  AB  имеет вид

  или

.

Обозначим выражение, стоящее в правой части этого равенства, через :

 .

Тогда секущая  AB  есть график функции . Очевидно, что  .

Введём теперь на отрезке  [a;b]  вспомогательную функцию

 .

Функции    удовлетворяет всем условиям теоремы Ролля. В самом деле, она непрерывна на отрезке  [a;b]  (как разность непрерывной функции  f(x)  и линейной функции)  и во всех внутренних точках отрезка   [a;b]   имеет производную, равную

.

Кроме того, так как   ,   то  ,   т.е.  функция    принимает равные значения на концах отрезка   [a;b].  Следовательно, согласно теореме Ролля, на отрезке  [a;b]  найдётся такая точка  c,  что .  Это значит, что  ,   т.е.  ,  откуда       .

Теорема доказана.

Обратимся к геометрическому смыслу теоремы Лагранжа. Как мы уже отметили, величина      есть угловой коэффициент секущей  AB.   В то же время    есть угловой коэффициент касательной к кривой    в точке с абсциссой  .  Таким образом, геометрически утверждение теоремы Лагранжа равносильно следующему: на дуге  всегда найдётся точка, в которой касательная параллельна хорде (рис. 4).

Отметим, что теорему Ролля можно рассматривать как частный случай теоремы Лагранжа.

B

A

C

b

ac

c

o

y

x

Рис.4


 

А также другие работы, которые могут Вас заинтересовать

4175. Михаил Павлович Гастфер 60.5 KB
  Михаил Павлович Гастфер. В одной из аудиторий Московского государственного института культуры идет лекция по технической библиографии. Преподаватель, пожилой, но прямой и подтянутый человек, читает вдохновенно и образно. Он во всеоружии мыслей, факто...
4176. Создание топографических планов масштаба 1:5000 81 KB
  При создании топографических планов методами стереотопографической, комбинированной, и фототеодолитной съёмки выполняется комплекс камеральных работ. Полный комплекс этих работ при стереотопографической съёмке включает в себя составление тех проекта...
4177. МЧС и гражданская оборона 116.5 KB
  История российской гражданской обороны Местная противовоздушная оборона (МПВО) 1918-1932 гг. Впервые возможность дезорганизации тыла появилась в годы мировой войны 1914 гг., когда в ходе военных действий нашла применение боевая авиация, с...
4178. Роль государственной собственности в промышленно развитых странах 268 KB
  Введение. Изучение опыта государственного участия в экономическом развитии передовых стран мира интересно и познавательно само по себе. Но для нас существует еще и проблема использования такого опыта с учетом ошибок предшественников, его адаптации к...
4179. Рынок труда и механизм его функционирования 130 KB
  Введение. Рынок труда является одним из наиболее сложных рынков, которые существуют и функционируют. В отличие от других рынков специфика этого рынка состоит в том, что здесь объектом контрактов выступает сам человек, его способность к труду. Сфера ...
4180. Механизм генерации транзактов в модели. Формирование цепей текущих и будущих событий. Основные атрибуты транзактов. Управление движением транзактов. 66.5 KB
  Введение Процессы функционирования различных систем могут быть представлены той или иной совокупностью систем массового обслуживания (СМО) - стохастических, динамических, дискретно-непрерывных математических моделей. Исследование характеристик таких...
4181. Гражданская оборона в современных условиях 107 KB
  Силы гражданской обороны. Степень надежности управления гражданской обороной стала одним из важнейших показателей ее готовности к выполнению поставленных задач. Управление гражданской обороной - это целенаправленная деятельность начальников, штаб...
4182. Генрих Белль. Жизнь и творчество 135.5 KB
  Генрих Бёлль родился в 1917 году в Кёльне и был восьмым ребенком в семье. Его отец, Виктор Бёлль, потомственный столяр-краснодеревщик, а предки со стороны матери - рейнские крестьяне и пивовары. Начало его жизненного пути схоже с судьба...
4183. Общая характеристика институционализма 96.5 KB
  Введение Термин институционализм происходит от слова институт или институция, под которым понимается определенный обычай, порядок, принятый в обществе, а также закрепление обычаев в виде закона или учреждени...