30559

Первообразная и неопределенный ∫. Опр. первообразной. Опр. неопределенного ∫, свойства. Опр. по Риману. Необходимое и достаточное условие интегрируемости. Ньютон-Лейбниц

Доклад

Математика и математический анализ

Функция Fx называется первообразной для функции fx на интервале b если в любой точке х из интервала b функция Fx дифференцируема и имеет производную Fx=fx. Совокупность всех первообразных функций для данной функции fx на интервале b называется неопределенным интегралом от функции fx на этом интервале и обозначается где fxdx подынтегральное выражение fx подынтегральная функция x переменная интегрирования. Операцию нахождения первообразной восстановление функции по ее производной называют интегрированием...

Русский

2013-08-24

23.61 KB

7 чел.

1. Первообразная и неопределенный ∫. Опр. первообразной. Опр. неопределенного ∫, свойства. Опр. по Риману. Необходимое и достаточное условие интегрируемости. Ньютон-Лейбниц.

Определение. Функция F(x) называется первообразной для функции f(x) на интервале (a,b), если в любой точке х из интервала (a,b) функция F(x) дифференцируема и имеет производную F’(x)=f(x).

Определение. Совокупность всех первообразных функций для данной функции f(x) на интервале (a,b) называется неопределенным интегралом от функции f(x) (на этом интервале) и обозначается

где f(x)dx – подынтегральное выражение, f(x) – подынтегральная функция, x – переменная интегрирования.

Операцию нахождения первообразной, восстановление функции по ее производной называют интегрированием функции.

Интегрирование – операция обратная дифференцированию.

Примеры:

  1.  ∫3x2 dx = x3+C, так как (x3+C)’ = 3x2.
  2.  cos x dx = sin x +C, так как (sin x +C)’=cos x.
  3.  ∫(1\x)dxln |x|+C, так как (ln|x| +C)’ = 1\x.
  4.  e-2x dx = -1\2 e-2x +C, так как (-1\2 e-2x +C)’ = E-2x.

Основные свойства неопределенного интеграла

Вытекают из определения

1. 

т.е. производная неопределенного интеграла равна подынтегральной функции;,

2.

знаки ∫ и d взаимно сокращаются, в случае если знак интеграла стоит перед знаком дифференциала., но в этом случае к F(x) следует добавить произвольную постоянную С.  

Линейные свойства

3

Неопределенный интеграл от алгебраической суммы функций равен алгебраической сумме интегралов от этих функций в отдельности

4.

Постоянный множитель можно вынести из-под знака интеграла, если A=const и A≠ 0

Интеграл по Риману (Бернгард Риман 1826-1866)

Число I называется интегралом Римана функции f(х) на отрезке [a,b], если для любого ε>0 существует такое δ>0, что каково бы ни было разбиение τ={xk} (0≤kkτ) отрезка [a,b], мелкость которого меньше δ (т.е. |τ |<δ), и каковы бы ни были точки ζk Є[xk-1,xk], k=1,2,…, kτвыполняется неравенство | δτ(fζ1, …, ζτ) – I| <ε.

Определение. Функция f(x) называется интегрируемой по Риману на сегменте [a,b] если существует конечный предел I интегральных сумм этой функции при ∆→0. Указанной придел I называется определенным интегралом от функции f(x) по сегменту [a,b] и обозначается

Необходимое и достаточное условие интегрируемости.

Теорема. Для того, чтобы ограниченная на отрезке [a,b] функция f(x) была интегрируемой на этом отрезке, необходимо и достаточно, чтобы для любого ε>0 нашлось такое разбиение Т сегмента [a,b], для которого

S-sε, где S и s – верхняя и нижняя сумма, соответственно.

Формула Ньютона-Лейбница.

Вычисление определенных интегралов методом, основанным на определении интеграла как предела интегральной суммы, как правило, связано с большими трудностями. Существует более удобный метод, который основан на связи между неопределенным и определенным интегралами.

Теорема. Значение определенного интеграла равно разности значений любой первообразной от подынтегральной функции, взятых при верхнем и нажнем пределах интеграла   где F′(x)=f(x)

Значение определенного интеграла равно приращению любой первообразной от подынтегральной функции в интервале интегрирования.

Эта формула открывает широкие возможности для вычисления определенных интегралов, поскольку задача вычисления опред.интеграла сводится к задаче исчисления неопред.интеграла, которая достаточно полно изучена.


Дополнительно

Необходимое и достаточное условие интегрируемости.

Теорема. Для того, чтобы ограниченная на отрезке [a,b] функция f(x) была интегрируемой на этом отрезке, необходимо и достаточно, чтобы для любого ε>0 нашлось такое разбиение Т сегмента [a,b], для которого

S-sε, где S и s – верхняя и нижняя сумма, соответственно.

Доказательство

Пусть функция f(x) интегрируема на отрезке [a,b]. Обозначим через предел интегральных сумм этой функции. По определению предела интегральных сумм для любого ε>0 существует δ>0 такое, что для любого разбиения Т, удовлетворяющего условию ∆<δ, независимо от выбора точек ζi на частичных сегментах выполняется неравенство

|I{xi, ζi} – I|<ε\4                     

Зафиксируем любое разбиение T. Для него согласно свойству верхних и нижних сумм  для данного разбиения Т можно указать такие две интегральные суммы ζi’и ζi’’, что

S-I{xi, ζi’}≤ε\4,                      I{xi, ζi’’}-s≤ε\4                      (5)

Отметим, что обе интегральные суммы I{xi, ζi’} и {xi, ζi’’} удовлетворяют неравенству (4). Из соотношения S –s = (S – I{xi, ζi’}) + (I{xi, ζi’}–I) +(I - {xi, ζi’’}) +({xi, ζi’’} – s) и неравенств (4) и (5) следует, что S – s < ε, Теорема доказана.

Понятие верхних и нижних сумм

функция f(x) ограничена на сегменте [a,b] и Т  - разбиение этого сегмента точками а=х0<x1<…<xn=b. Обозначим через Мi и mi соответственно точную верхнюю и точную нижнюю грани этой функции на сегменте [xi-1,xi]. Суммы SM1x1M2x2+…+ Mnxn= и sm1x1+m2x2+…+mnxn= называют соответственно верхней и нижней суммами функций f(х) для данного разбиения T сегмента [a,b].

Свойство верхних и нижних сумм.

Для любого фиксированного разбиения Т и для любого ε>0 промежуточные точки ζi на сегментах [xi-1xi] можно выбрать так, что интегральная сумма I{xi, ζi } будет удовлетворять неравенствам 0≤S-I{xi, ζi}< ε. Точки ζможно выбрать также и таким образом, что интегральная сумма будет удовлетворять условию 0≤I{xi, ζi}-s< ε.

 


 

А также другие работы, которые могут Вас заинтересовать

85851. Рівень мотивації прагнення до уникнення невдачі у студентів 498.5 KB
  Мета - вивчити вплив на ефективність навчальної діяльності прагнення до уникнення невдачі у студентів. Завдання: Вивчити літературу з даної теми. Вивчити мотиви навчальної діяльності студентів; З’ясувати чи впливає на ефективність навчальної діяльності студента його прагнення до уникнення невдачі.
85854. Бізнес-план ПП «Металдизайн» 78.76 KB
  Серед компаній-замовників можуть бути підприємства з меблевої галузі, галузі з виробництва дверей, дизайнерські фірми і фірми, що займаються ландшафтним дизайном, ритуальні агентства, будівельні фірми - для виконання клієнтських замовлень.
85855. Разработка принципиальной электрической схемы устройства суммирования двоичных чисел с параллельным переносом 821.57 KB
  Разработать принципиальную электрическую схему устройства суммирования двоичных чисел с параллельным переносам в соответствии с заданной структурной схемой лист 1 на микросхемах схематехники КМОП. Описать принцип построения и разработать в базисе ИНЕ логическую схему четырехразрядного двоичного...
85856. Анализ влияния химического состава стали 20Л на предел прочности и определение оптимального состава стали 770.36 KB
  Проведен корреляционный и регрессионный анализы, проведено планирование и обработка результатов активного эксперимента, расчеты коэффициентов линейной модели и проверка их статистической значимости.
85858. Рассчитать и спроектировать привод 1.19 MB
  Разрабатываемый привод состоит из двигателя, одноступенчатого редуктора с цилиндрической косозубой передачей, цепной передачи, компенсирующей муфты упругой втулочно-пальцевой, соединяющей редуктор с двигателем. В проектируемом приводе вращение от электродвигателя передается ведущему валу редуктора и далее на конвейер.