30559

Первообразная и неопределенный ∫. Опр. первообразной. Опр. неопределенного ∫, свойства. Опр. по Риману. Необходимое и достаточное условие интегрируемости. Ньютон-Лейбниц

Доклад

Математика и математический анализ

Функция Fx называется первообразной для функции fx на интервале b если в любой точке х из интервала b функция Fx дифференцируема и имеет производную Fx=fx. Совокупность всех первообразных функций для данной функции fx на интервале b называется неопределенным интегралом от функции fx на этом интервале и обозначается где fxdx подынтегральное выражение fx подынтегральная функция x переменная интегрирования. Операцию нахождения первообразной восстановление функции по ее производной называют интегрированием...

Русский

2013-08-24

23.61 KB

7 чел.

1. Первообразная и неопределенный ∫. Опр. первообразной. Опр. неопределенного ∫, свойства. Опр. по Риману. Необходимое и достаточное условие интегрируемости. Ньютон-Лейбниц.

Определение. Функция F(x) называется первообразной для функции f(x) на интервале (a,b), если в любой точке х из интервала (a,b) функция F(x) дифференцируема и имеет производную F’(x)=f(x).

Определение. Совокупность всех первообразных функций для данной функции f(x) на интервале (a,b) называется неопределенным интегралом от функции f(x) (на этом интервале) и обозначается

где f(x)dx – подынтегральное выражение, f(x) – подынтегральная функция, x – переменная интегрирования.

Операцию нахождения первообразной, восстановление функции по ее производной называют интегрированием функции.

Интегрирование – операция обратная дифференцированию.

Примеры:

  1.  ∫3x2 dx = x3+C, так как (x3+C)’ = 3x2.
  2.  cos x dx = sin x +C, так как (sin x +C)’=cos x.
  3.  ∫(1\x)dxln |x|+C, так как (ln|x| +C)’ = 1\x.
  4.  e-2x dx = -1\2 e-2x +C, так как (-1\2 e-2x +C)’ = E-2x.

Основные свойства неопределенного интеграла

Вытекают из определения

1. 

т.е. производная неопределенного интеграла равна подынтегральной функции;,

2.

знаки ∫ и d взаимно сокращаются, в случае если знак интеграла стоит перед знаком дифференциала., но в этом случае к F(x) следует добавить произвольную постоянную С.  

Линейные свойства

3

Неопределенный интеграл от алгебраической суммы функций равен алгебраической сумме интегралов от этих функций в отдельности

4.

Постоянный множитель можно вынести из-под знака интеграла, если A=const и A≠ 0

Интеграл по Риману (Бернгард Риман 1826-1866)

Число I называется интегралом Римана функции f(х) на отрезке [a,b], если для любого ε>0 существует такое δ>0, что каково бы ни было разбиение τ={xk} (0≤kkτ) отрезка [a,b], мелкость которого меньше δ (т.е. |τ |<δ), и каковы бы ни были точки ζk Є[xk-1,xk], k=1,2,…, kτвыполняется неравенство | δτ(fζ1, …, ζτ) – I| <ε.

Определение. Функция f(x) называется интегрируемой по Риману на сегменте [a,b] если существует конечный предел I интегральных сумм этой функции при ∆→0. Указанной придел I называется определенным интегралом от функции f(x) по сегменту [a,b] и обозначается

Необходимое и достаточное условие интегрируемости.

Теорема. Для того, чтобы ограниченная на отрезке [a,b] функция f(x) была интегрируемой на этом отрезке, необходимо и достаточно, чтобы для любого ε>0 нашлось такое разбиение Т сегмента [a,b], для которого

S-sε, где S и s – верхняя и нижняя сумма, соответственно.

Формула Ньютона-Лейбница.

Вычисление определенных интегралов методом, основанным на определении интеграла как предела интегральной суммы, как правило, связано с большими трудностями. Существует более удобный метод, который основан на связи между неопределенным и определенным интегралами.

Теорема. Значение определенного интеграла равно разности значений любой первообразной от подынтегральной функции, взятых при верхнем и нажнем пределах интеграла   где F′(x)=f(x)

Значение определенного интеграла равно приращению любой первообразной от подынтегральной функции в интервале интегрирования.

Эта формула открывает широкие возможности для вычисления определенных интегралов, поскольку задача вычисления опред.интеграла сводится к задаче исчисления неопред.интеграла, которая достаточно полно изучена.


Дополнительно

Необходимое и достаточное условие интегрируемости.

Теорема. Для того, чтобы ограниченная на отрезке [a,b] функция f(x) была интегрируемой на этом отрезке, необходимо и достаточно, чтобы для любого ε>0 нашлось такое разбиение Т сегмента [a,b], для которого

S-sε, где S и s – верхняя и нижняя сумма, соответственно.

Доказательство

Пусть функция f(x) интегрируема на отрезке [a,b]. Обозначим через предел интегральных сумм этой функции. По определению предела интегральных сумм для любого ε>0 существует δ>0 такое, что для любого разбиения Т, удовлетворяющего условию ∆<δ, независимо от выбора точек ζi на частичных сегментах выполняется неравенство

|I{xi, ζi} – I|<ε\4                     

Зафиксируем любое разбиение T. Для него согласно свойству верхних и нижних сумм  для данного разбиения Т можно указать такие две интегральные суммы ζi’и ζi’’, что

S-I{xi, ζi’}≤ε\4,                      I{xi, ζi’’}-s≤ε\4                      (5)

Отметим, что обе интегральные суммы I{xi, ζi’} и {xi, ζi’’} удовлетворяют неравенству (4). Из соотношения S –s = (S – I{xi, ζi’}) + (I{xi, ζi’}–I) +(I - {xi, ζi’’}) +({xi, ζi’’} – s) и неравенств (4) и (5) следует, что S – s < ε, Теорема доказана.

Понятие верхних и нижних сумм

функция f(x) ограничена на сегменте [a,b] и Т  - разбиение этого сегмента точками а=х0<x1<…<xn=b. Обозначим через Мi и mi соответственно точную верхнюю и точную нижнюю грани этой функции на сегменте [xi-1,xi]. Суммы SM1x1M2x2+…+ Mnxn= и sm1x1+m2x2+…+mnxn= называют соответственно верхней и нижней суммами функций f(х) для данного разбиения T сегмента [a,b].

Свойство верхних и нижних сумм.

Для любого фиксированного разбиения Т и для любого ε>0 промежуточные точки ζi на сегментах [xi-1xi] можно выбрать так, что интегральная сумма I{xi, ζi } будет удовлетворять неравенствам 0≤S-I{xi, ζi}< ε. Точки ζможно выбрать также и таким образом, что интегральная сумма будет удовлетворять условию 0≤I{xi, ζi}-s< ε.

 


 

А также другие работы, которые могут Вас заинтересовать

19095. Характеристики дискретных (цифровых) фильтров 176 KB
  Лекция № 8. Характеристики дискретных цифровых фильтров. Основными характеристиками стационарных линейных дискретных фильтров являются следующие: импульсная характеристика ; комплексная частотная характеристика ; амплитудночастотная и фазочастот...
19096. Z-преобразование 233 KB
  Лекция № 9. Zпреобразование. Удобным способом анализа дискретных последовательностей является Zпреобразование. При Zпреобразовании разностные уравнения описывающие работу дискретной системы преобразуются в алгебраические уравнения с которыми проще производит
19097. Связь системной функции с частотная характеристикой. Обратное Z-преобразование 214.5 KB
  Лекция № 10. Связь системной функции с частотная характеристикой. Обратное Zпреобразование. Структурную схему дискретной системы можно составить либо по разностному уравнению либо с помощью системной передаточной функции. Применяя Zпреобразование к обеим частям ...
19098. Цифровая обработка сигналов в частотной области. Дискретное преобразование Фурье 198 KB
  Лекция № 11. Цифровая обработка сигналов в частотной области. Дискретное преобразование Фурье. Дискретное преобразование Фурье ДПФ относится к классу основных преобразований при цифровой обработке сигналов. Дискретное преобразование Фурье по возможности вычисляе
19099. Цифровая обработка сигналов в частотной области. Быстрое преобразование Фурье 316.5 KB
  Лекция № 12. Цифровая обработка сигналов в частотной области. Быстрое преобразование Фурье. Нахождение спектральных составляющих дискретного комплексного сигнала непосредственно по формуле ДПФ требует комплексных умножений и комплексных сложений. Так как колич...
19100. Некоторые специальные возможност и Excel 467.55 KB
  После этого появится новое окно, где нужно ввести значения для указанных ячеек. Описанную операцию нужно повторить несколько раз для создания нескольких. Для того, чтобы заполнить ячейки значениями из конкретного сценария
19101. Устойчивость дискретных систем 199 KB
  Лекция № 13. Устойчивость дискретных систем. Линейная дискретная система с постоянными параметрами стационарный фильтр называется устойчивой если при любых начальных условиях и любом ограниченном входном сигнале выходной сигнал также остается ограниченным то е...
19102. Реализация алгоритмов цифровой фильтрации 281 KB
  Лекция № 14. Реализация алгоритмов цифровой фильтрации. Графическим представлением алгоритмов цифровой фильтрации являются структурные схемы. Структурную схему дискретной системы можно составить либо по разностному уравнению либо с помощью системной передаточн...
19103. Проектирование (синтез) линейных цифровых фильтров 144 KB
  Лекция № 15. Проектирование синтез линейных цифровых фильтров. Под проектированием синтезом цифрового фильтра понимают выбор таких коэффициентов системной передаточной функции при которых характеристики получающегося фильтра удовлетворяют заданным требовани...