30559

Первообразная и неопределенный ∫. Опр. первообразной. Опр. неопределенного ∫, свойства. Опр. по Риману. Необходимое и достаточное условие интегрируемости. Ньютон-Лейбниц

Доклад

Математика и математический анализ

Функция Fx называется первообразной для функции fx на интервале b если в любой точке х из интервала b функция Fx дифференцируема и имеет производную F’x=fx. Совокупность всех первообразных функций для данной функции fx на интервале b называется неопределенным интегралом от функции fx на этом интервале и обозначается где fxdx – подынтегральное выражение fx – подынтегральная функция x – переменная интегрирования. Операцию нахождения первообразной восстановление функции по ее производной называют интегрированием...

Русский

2013-08-24

23.61 KB

7 чел.

1. Первообразная и неопределенный ∫. Опр. первообразной. Опр. неопределенного ∫, свойства. Опр. по Риману. Необходимое и достаточное условие интегрируемости. Ньютон-Лейбниц.

Определение. Функция F(x) называется первообразной для функции f(x) на интервале (a,b), если в любой точке х из интервала (a,b) функция F(x) дифференцируема и имеет производную F’(x)=f(x).

Определение. Совокупность всех первообразных функций для данной функции f(x) на интервале (a,b) называется неопределенным интегралом от функции f(x) (на этом интервале) и обозначается

где f(x)dx – подынтегральное выражение, f(x) – подынтегральная функция, x – переменная интегрирования.

Операцию нахождения первообразной, восстановление функции по ее производной называют интегрированием функции.

Интегрирование – операция обратная дифференцированию.

Примеры:

  1.  ∫3x2 dx = x3+C, так как (x3+C)’ = 3x2.
  2.  cos x dx = sin x +C, так как (sin x +C)’=cos x.
  3.  ∫(1\x)dxln |x|+C, так как (ln|x| +C)’ = 1\x.
  4.  e-2x dx = -1\2 e-2x +C, так как (-1\2 e-2x +C)’ = E-2x.

Основные свойства неопределенного интеграла

Вытекают из определения

1. 

т.е. производная неопределенного интеграла равна подынтегральной функции;,

2.

знаки ∫ и d взаимно сокращаются, в случае если знак интеграла стоит перед знаком дифференциала., но в этом случае к F(x) следует добавить произвольную постоянную С.  

Линейные свойства

3

Неопределенный интеграл от алгебраической суммы функций равен алгебраической сумме интегралов от этих функций в отдельности

4.

Постоянный множитель можно вынести из-под знака интеграла, если A=const и A≠ 0

Интеграл по Риману (Бернгард Риман 1826-1866)

Число I называется интегралом Римана функции f(х) на отрезке [a,b], если для любого ε>0 существует такое δ>0, что каково бы ни было разбиение τ={xk} (0≤kkτ) отрезка [a,b], мелкость которого меньше δ (т.е. |τ |<δ), и каковы бы ни были точки ζk Є[xk-1,xk], k=1,2,…, kτвыполняется неравенство | δτ(fζ1, …, ζτ) – I| <ε.

Определение. Функция f(x) называется интегрируемой по Риману на сегменте [a,b] если существует конечный предел I интегральных сумм этой функции при ∆→0. Указанной придел I называется определенным интегралом от функции f(x) по сегменту [a,b] и обозначается

Необходимое и достаточное условие интегрируемости.

Теорема. Для того, чтобы ограниченная на отрезке [a,b] функция f(x) была интегрируемой на этом отрезке, необходимо и достаточно, чтобы для любого ε>0 нашлось такое разбиение Т сегмента [a,b], для которого

S-sε, где S и s – верхняя и нижняя сумма, соответственно.

Формула Ньютона-Лейбница.

Вычисление определенных интегралов методом, основанным на определении интеграла как предела интегральной суммы, как правило, связано с большими трудностями. Существует более удобный метод, который основан на связи между неопределенным и определенным интегралами.

Теорема. Значение определенного интеграла равно разности значений любой первообразной от подынтегральной функции, взятых при верхнем и нажнем пределах интеграла   где F′(x)=f(x)

Значение определенного интеграла равно приращению любой первообразной от подынтегральной функции в интервале интегрирования.

Эта формула открывает широкие возможности для вычисления определенных интегралов, поскольку задача вычисления опред.интеграла сводится к задаче исчисления неопред.интеграла, которая достаточно полно изучена.


Дополнительно

Необходимое и достаточное условие интегрируемости.

Теорема. Для того, чтобы ограниченная на отрезке [a,b] функция f(x) была интегрируемой на этом отрезке, необходимо и достаточно, чтобы для любого ε>0 нашлось такое разбиение Т сегмента [a,b], для которого

S-sε, где S и s – верхняя и нижняя сумма, соответственно.

Доказательство

Пусть функция f(x) интегрируема на отрезке [a,b]. Обозначим через предел интегральных сумм этой функции. По определению предела интегральных сумм для любого ε>0 существует δ>0 такое, что для любого разбиения Т, удовлетворяющего условию ∆<δ, независимо от выбора точек ζi на частичных сегментах выполняется неравенство

|I{xi, ζi} – I|<ε\4                     

Зафиксируем любое разбиение T. Для него согласно свойству верхних и нижних сумм  для данного разбиения Т можно указать такие две интегральные суммы ζi’и ζi’’, что

S-I{xi, ζi’}≤ε\4,                      I{xi, ζi’’}-s≤ε\4                      (5)

Отметим, что обе интегральные суммы I{xi, ζi’} и {xi, ζi’’} удовлетворяют неравенству (4). Из соотношения S –s = (S – I{xi, ζi’}) + (I{xi, ζi’}–I) +(I - {xi, ζi’’}) +({xi, ζi’’} – s) и неравенств (4) и (5) следует, что S – s < ε, Теорема доказана.

Понятие верхних и нижних сумм

функция f(x) ограничена на сегменте [a,b] и Т  - разбиение этого сегмента точками а=х0<x1<…<xn=b. Обозначим через Мi и mi соответственно точную верхнюю и точную нижнюю грани этой функции на сегменте [xi-1,xi]. Суммы SM1x1M2x2+…+ Mnxn= и sm1x1+m2x2+…+mnxn= называют соответственно верхней и нижней суммами функций f(х) для данного разбиения T сегмента [a,b].

Свойство верхних и нижних сумм.

Для любого фиксированного разбиения Т и для любого ε>0 промежуточные точки ζi на сегментах [xi-1xi] можно выбрать так, что интегральная сумма I{xi, ζi } будет удовлетворять неравенствам 0≤S-I{xi, ζi}< ε. Точки ζможно выбрать также и таким образом, что интегральная сумма будет удовлетворять условию 0≤I{xi, ζi}-s< ε.

 


 

А также другие работы, которые могут Вас заинтересовать

2547. Инновационный маркетинг 417.52 KB
  Инновационный маркетинг — понятие, возникшее относительно недавно. Предпосылкой появления данной экономической категории явилось общее возрастание роли инноваций в деятельности компаний. В силу ограниченности научно-технических ресурсов, являющихся базой для появления первичных инноваций.
2548. Характеристика беспроводных КС 199.46 KB
  Диапазоны электромагнитного спектра. Распространение электромагнитных волн. Связь одного источника и нескольких приемников. Классификация беспроводных сетей. Беспроводная линия связи.
2549. Мотивация персонала российской компании на основе использования зарубежного опыта 738.38 KB
  Целью данной работы является исследование теоретических аспектов управления персоналом в деятельности компании ОАО ЛУКОЙЛ, анализ соответствующего зарубежного опыта, а также выработка рекомендаций и возможных направлений совершенствования управления персоналом компании.
2550. Документ – основний вид писемного ділового мовлення 261.79 KB
  До істотних ознак писемного ділового мовлення можна віднести безособовий характер тексту, висловлювання йде від якоїсь узагальненої особи (держави, закону, порядку, права). І навіть у тих документах, де є конкретна особа (заява, доручення тощо), авторська індивідуальність приховується стандартом документа.
2551. Позиции основных национальных валют в мировой валютной системе 286.81 KB
  Ямайская валютная система. Мировые и национальные валютные рынки. Основные национальные валюты и их место в МВС. Основные национальные валюты. Проблема конвертируемости рубля.
2552. Анализ состояния и эффективности использования основных средств на ООО шахта Добропольская 216.03 KB
  Теоретические аспекты исследования состояния и эффективности использования основных фондов. Система показателей состояния и эффективности использования основных фондов. Направления улучшения состояния и эффективности использования основных фондов. Анализ состояния и эффективности использования основных фондов с использованием опыта зарубежных стран. Анализ эффективности использования основных фондов.
2553. Расчет настройки зубофрезерного станка для обработки цилиндрического косозубого колеса 333.29 KB
  Зубофрезерный полуавтомат предназначен для фрезерования зубьев цилиндрических прямозубых и косозубых колес, а также червячных колес в условиях среднею и крупносерийного производства.
2554. Наноматериалы и нанотехнология 412.69 KB
  К наноматериалам условно относят дисперсные и массивные материалы, содержащие структурные элементы (зерна, кристаллиты, блоки, кластеры и т.п.), геометрические размеры которых хотя бы в одном измерении не превышают 100 нм, и обладающие качественно новыми функциональными и эксплуатационными характеристиками.
2555. Вигодовування грудної дитини та харчування дітей старше року 74.78 KB
  Основні принципи вигодовування дітей раннього віку. Техніка прикладання дитини до груді. Правила грудного вигодовування. Протипоказання і утруднення при грудному вигодовуванні. Дієта і режим жінки, яка годує.