30560

Непрерывные функции в Rn . Дифференцируемые функции в Rn .. Необходимые и достаточные условия дифференцируемости функции в точке. Полный дифференциал функции нескольких переменных

Доклад

Математика и математический анализ

Дифференцируемые функции в Rn . Необходимые и достаточные условия дифференцируемости функции в точке. Полный дифференциал функции нескольких переменных.

Русский

2013-08-24

60.52 KB

30 чел.

Непрерывные функции в Rn . Дифференцируемые функции в Rn .. Необходимые и достаточные условия дифференцируемости функции в точке. Полный дифференциал функции нескольких переменных.

ОТВЕТ:

Необходимые и достаточные условия дифференцируемости функции в точке.

Пусть функция y = f(x) определена в некоторой окрестности точки x0.

Функция f(x) называется дифференцируемой в точке х0, если ее приращение представимо в виде

 

Δf = f(x0 + Δx) − f(x0) = A · Δx + o(Δx) ,

 

где A — число, не зависящее от Δх, а o(Δx) — функция более высокого порядка малости чем Δx при Δх → 0 .

Таким образом, приращение дифференцируемой функции является суммой линейной относительно Δx ч асти A · Δx и бесконечно малой более высокого порядка малости чем Δx при Δх → 0.

Линейная часть приращения дифференцируемой функции называется дифференциалом в точке х0 и обозначается символом df(x0), т.е.

 

df(x0) = A · Δx.

 

Необходимое и достаточное условие дифференцируемости

Теорема 0.1. Для того, чтобы функция f(x) была дифференцируема в точке x0, необходимо и достаточно, чтобы в этой точке она имела конечную производную. При этом

 Δf = f'(x0) · Δx + ox) ,  

 

Доказательство приведено в книге И.М. Петрушко и Л.А. Кузнецова “Курс высшей математики: Введение в математический анализ. Дифференциальное исчисление.” М.: Изд–во МЭИ, 2000. Стр. 96.

Следствие. Функция, дифференцируемая в точке, непрерывна в этой точке.

Замечание. Дифференциалом dx независимой переменной будем считать приращение Δx, т.е.

 

dx ≡ Δx.

 

Отсюда следует формула для вычисления дифференциала

 

df(x0) = f'(x0dx.

Частной производной по  от функции  называется предел отношения частного приращения этой функции  по  к приращению , когда последнее стремится к нулю:
 .


Частной производной по 
 от функции  называется предел отношения частного приращения этой функции  по  к приращению , когда последнее стремится к нулю:
 .


Пусть задана функция 
 . Если аргументу  сообщить приращение , а аргументу  – приращение , то функция получит приращение , которое называется полным приращением функции и определяется формулой: .


Функция 
, полное приращение  которой в данной точке может быть представлено в виде суммы двух слагаемых (выражения, линейного относительно  и , и величины бесконечно малой высшего порядка относительно ):
 ,
где 
 и  стремятся к нулю, когда  и  стремятся к нулю (т.е. когда ), называется дифференцируемой в данной точке.


Линейная (относительно 
 и ) часть полного приращения функции называется полным дифференциалом и обозначается 
,
где 
 и  – дифференциалы независимых переменных, которые, по определению, равны соответствующим приращениям  и .


Частные производные от частных производных первого порядка называются частными производными второго порядка. Для функции двух переменных 
 их четыре:

 


 

А также другие работы, которые могут Вас заинтересовать

57449. Фразеологизмы 33.5 KB
  Знать: о фразеологизмах устойчивых сочетаниях слов их роли в обогащении речи. Упражнение 96 дети зачитывают исконно русские слова затем заимствованные.
57451. Любимые книги 42.5 KB
  Цели: Повторить правописание буквосочетаний чу-щу, ча-ща, жи-ши; перенос слов. Развивать память, внимание, ассоциативное мышление, образную речь. Дать ориентир на познавательный интерес и творческую активность. Прививать любовь к чтению.
57452. Второстепенные члены предложения 47.5 KB
  Цель: Проверить теоретические знания по теме Второстепенные члены предложения. Совершенствовать навыки и умения видеть и выделять в предложениях...
57454. Тепловые двигатели 260.5 KB
  Цели урока: Образовательная: 1 показать необратимость тепловых процессов 2 исследовать возможность создания вечных двигателей на основе 1 и 2 начала термодинамики 3 рассмотрение проблемы энергоресурсов Земли...
57455. Головные уборы 5.98 MB
  Задача урока: Учитель: Сегодня перед вами ставлю задачу урока такую: вы должны используя метод исследования попробовать себя в качестве модельеров головных уборов и выбрать для пошива модель кепи ткань вид отделки и аксессуары.