30562

Локальный экстремум функции многих переменных. Достаточные условия экстремума

Доклад

Математика и математический анализ

ТочкаM0x0;y0 внутренняя точка области D. Если в D присутствует такая окрестность UM0 точки M0 что для всех точек то точка M0 называется точкой локального максимума. А если же для всех точек то точка M0 называется точкой локального минимума функции zxy. поясняется геометрический смысл локального максимума: M0 точка максимума так как на поверхности z =z xy соответствующая ей точка C0 находится выше любой соседней точки C в этом локальность максимума.

Русский

2013-08-24

45.86 KB

4 чел.

7. Локальный экстремум функции многих переменных. Достаточные условия экстремума.

Доска: 

Определение. Пусть задана функция двух переменных z=z(x,y), (x,y)D. ТочкаM0(x0;y0) - внутренняя точка области D.

Если в D присутствует такая окрестность UM0 точки M0, что для всех точек

то точка M0 называется точкой локального максимума. А само значение z(M0) - локальным максимумом.

А если же для всех точек

то точка M0 называется точкой локального минимума функции z(x,y). А само значение z(M0) - локальным минимумом.

Локальный максимум и локальный минимум называются локальными экстремумами функции z(x,y). На рис. поясняется геометрический смысл локального максимума: M0 - точка максимума, так как на поверхности z =z (x,y) соответствующая ей точка C0 находится выше любой соседней точки C (в этом локальность максимума).

Заметим, что на поверхности в целом есть точки (например, В), которые находятся выше C0, но эти точки (например, В) не являются "соседними" с точкой C0.

В частности, точке В соответствует понятие глобального максимума:

Аналогично определяется и глобальный минимум:

Теорема  (необходимые условия экстремума).

Пусть задана функция z =z (x,y), (x,y)D. Точка M0(x0;y0D - точка локального экстремума.

Если в этой точке существуют z'x и z'y, то

Геометрическое доказательство "очевидно". Если в точке C0 на (рис.1.4) провести касательную плоскость, то она "естественно" пройдет горизонтально, т. е. под углом  к оси Ох и к оси Оу.

Тогда в соответствии с геометрическим смыслом частных производных (рис.1.3):

что и требовалось доказать.

Определение.

Если в точке M0 выполняются условия (1.41), то она называется стационарной точкой функции z (x,y).

Теорема (достаточные условия экстремума).

Пусть задана z =z (x,y), (x,y)D, которая имеет частные производные второго порядка в некоторой окрестности точки M0(x0,y0)D. Причем M0 - стационарная точка (т. е. необходимые условия (1.41) выполнены). Вычислим:

Если:

Доказательство теоремы использует темы (формула Тейлора функции нескольких переменных и теория квадратичных форм).

Выступление.

Доказательство теорем, приведенных выше. И весь материал выделенный курсивом.

Дополнительная часть.

Пример.

Исследовать на экстремум:

Решение

1. Найдём стационарные точки, решая систему (1.41):

то есть найдены четыре стационарные точки. 
2.

по теореме 1.4 в точке  – минимум.

Причём 

по теореме 1.4 в точке

- максимум. 
Причём


 

А также другие работы, которые могут Вас заинтересовать

6393. Основы Web-программирования на PHP 29.74 KB
  PHP. Быстрый старт. Первая программа на PHP. Вставив инструкцию print междуPHP-тегами, мы даем команду серверу послать приветствие Hello, world! в браузер. Это аналогично тому, что мы ввели данный текст в HTML-код...
6395. Мировоззрение и его исторические типы 72.5 KB
  Мировоззрение и его исторические типы Менталитет и мировоззрение Мировоззрение в современную эпоху Исторические типы мировоззрения Мифология как исторически первый тип мировоззрения Религия как тип мировоззрения Ме...
6396. Философия как тип мировоззрения 62.5 KB
  Философия как тип мировоззрения Философия и другие типы мировоззрения Структура философии Различные типы философствования Философия и другие типы мировоззрения Любое мировоззрение связано с осмыслением мира, выявлением смысла. В ми...
6397. История философии и ее связь с историческим процессом 99 KB
  История философии и ее связь с историческим процессом Происхождение философии Основные этапы развития европейской философии Особенности развития русской философии Происхождение философии. Философия возникла одновременно в древнейших...
6398. Материя как предмет философского осмысления 66.5 KB
  Материя как предмет философского осмысления Онтология и проблема бытия Проблема материи в истории философии Атрибуты материи Онтология и проблема бытия Одним из центральных разделов философии является онтология - уче...
6399. Сознание как проблема философии 58 KB
  Сознание как проблема философии Основные философские позиции по проблеме сознания Теория отражения. Основные философские позиции по проблеме сознания. Представители объективного идеализма (Платон, Гегель) трактуют сознание, дух как вечное п...
6400. Диалектика как теоретическая система и метод познания 98.5 KB
  Диалектика как теоретическая система и метод познания Исторические типы метафизики и диалектики Системность Детерминизм Развитие Исторические типы метафизики и диалектики Еще с древности люди заметили, что всем предметам и явлениям ми...
6401. Проблема человека в философии 71 KB
  Проблема человека в философии Проблема человека в истории философии Проблема антропосоциогенеза Природа человека Проблема человека является центральной для всей духовной культуры общества, т.к. только через себя мы понимаем окружающий мир, о...