30563

Условный экстремум функции многих переменных. Необходимое условие экстремума. Метод множителей Лагранжа

Доклад

Математика и математический анализ

Условный экстремум функции многих переменных. Пусть требуется найти максимумы и минимумы функции f х у при условии что х и у связаны уравнением х у = 0. Подберём так чтобы для значений х и у соответствующи экстремуму функции f х у вторая скобка в равенстве 5 обратилась в нуль метод Лагранжа. Метод неопределенных множителей Лагранжа Пусть функции fx1 x2 xn и Fix1 x2 xn i = 12 k дифференцируемы в некоторой области D с Rn .

Русский

2013-08-24

274 KB

69 чел.

8. Условный экстремум функции многих переменных. Необходимое условие экстремума. Метод множителей Лагранжа

Доска:

Формулы и вычисления, используемые при ответе

Выступление:

Определение 1. Функция u=f(x1, ..., xm) имеет условный максимум (условный минимум) в точке , если существует такая окрестность U(M0) точки М0, что для всех точек M(x1, ..., xm) этой окрестности, удовлетворяющих уравнениям связи

выполняется неравенство f(M0 f(M) (f(M0 f(M)).

      Пусть требуется найти максимумы и минимумы функции f (ху) при условии, что х и у связаны уравнением (х, у) = 0.

        При наличии условия  (х, у) = 0 из двух переменных х и у независимой будет только одна, например, х, так как у определяется из равенства  (х, у) = 0 как функция от х.

Найдём полные производные  и  :

,       (1)

.        (2)

В точках экстремума , то есть    .      (3)

 также равна нулю, так как  (ху) = 0, то есть

.           (4)

Составим линейную комбинацию: . Получим:

или

    (5)

 –  неопределённыё постоянный множитель.

        Последнее равенство выполняется во всех точках экстремума. Подберём    так, чтобы для значений х и у, соответствующи экстремуму функции f  (ху),, вторая скобка в равенстве (5) обратилась в нуль (метод Лагранжа).

        Для определённости будем предполагать, что в критических точках .

        Тогда из (5) следует равенство .

        Таким образом, для отыскания экстремума получим следующую систему уравнений с тремя неизвестнымих, у,  :

                        (6)

        Из этих уравнений определяем х, у и коэффициент  , который играет только вспомогательную роль и в дальнейшем не потребуется.

Таким образом, уравнения (6) являются необходимыми условиями условного экстремума.

Метод неопределенных множителей Лагранжа

Пусть функции f(x1x2,  … , xn) и 

Fi(x1x2,  … , xn)   (i = 1,2, … ,k)  дифференцируемы в некоторой области D с Rn . Тогда задача отыскания точек условного экстремума функции f(x1x2,  … , xn) при условиях связи

Fi(x1x2,  … , xn) = 0  (i = 1,2, … ,k).

(1)

эквивалентна задаче о нахождении точек обычного (безусловного) экстремума функции Лагранжа:

L(x1,x2,…,xn; λ12,…,λk) = f(x1,x2,…,xn) +λ1 · F1(x1,x2,…,xn) +

λ2 · F2(x1,x2,…,xn) + … + λk · Fk(x1,x2,…,xm).

(2)

Схема метода Лагранжа:

1. Составляем функцию Лагранжа (2).

2. Для отыскания стационарных точек функции Лагранжа находим ее частные производные по всем аргументам

и приравниваем их к нулю.

Получаем систему (n + k) уравнений с (n + k) неизвестными:

Если (x10,…,xn0; λ10,…,λk0) — решение этой системы, то оно определяет стационарную точку (x10,…,xn0) функции f(x1,x2,…,xn) при условиях связи (1), в которой функция может иметь условный экстремум.

3. Чтобы установить наличие или отсутствие условного экстремума в каждой стационарной точке M0 , нужно исследовать знак 2–го дифференциала функции Лагранжа

при значениях дифференциалов dx1, … ,dxn , не равных одновременно нулю и удовлетворяющих продифференцированным уравнениям связи

Дополнительно:

Теорема - Дифференцирование сложных функций многих переменных. 

Пусть u  = f (х, у) задана в области D и пусть х = х(t ) и у = у(t ) определены в области , причём, когда , то х и у принадлежат области D . Пусть функция u дифференцируема в  точке M0(x0, y0, z0),  а функции х(t ) и у(t ) дифференцируемы в соответствующей точке t0, то  сложная функция u = f[x(t), y(t)]=F (t) дифференцируема в точке t0 и имеет место равенство:

.

Пример: Найти условный экстремум функции z = 2x + 3y, при условии 

Решение: Составим функцию Лагранжа

Имеем

Система имеет два решения

Далее

При  поэтому функция z = 2x + 3y в точке  имеет условный минимум, а при  следовательно функция

 z = 2x + 3y имеет в точке  условный максимум.

Геометрический смысл условного экстремума функции:

Условными экстремумами функции z = f(x,y) при F(x,y) = 0 являются ее экстремумы на линии, образующейся в сечении поверхности z = f(x,y) цилиндрической поверхностью F(x,y) = 0 


 

А также другие работы, которые могут Вас заинтересовать

8083. Практическое применение бизнес-плана для организации и определение стратегических и тактических ориентиров фирмы ООО Лекарь 463.5 KB
  Введение Каждый предприниматель, начиная свою деятельность, должен ясно представлять потребность на перспективу в финансовых, материальных, трудовых и интеллектуальных ресурсах, источники их получения, а также уметь чётко рассчитывать эффективность ...
8084. Бизнес план предприятия Кофейни на 20-30 мест 65.3 KB
  Бизнес план предприятия Кофейни на 20-30 мест Введение. Родиной кофе является Кафа в юго-западной части Эфиопии. Из Эфиопии кофе был завезен через Красное море в Аравию. Особенно быстро кофе распространился в юго-западной части Йемена, в районе го...
8085. Бизнес-план Создание мини-пекарни 280.21 KB
  РАЗРАБОТКА БИЗНЕС-ПЛАНА НОВОГО ПРЕДПРИЯТИЯ Бизнес-план Создание мини-пекарни Банковский кредит Прибыль чистая в месяц Срок окупаемости סмесяцев. Резюме: Бизнес-план посвящен созданию мини-...
8086. Бизнес - план, его сущность и значение 43.34 KB
  Введение. В рыночной экономике бизнес - план является рабочим инструментом, используемым во всех сферах предпринимательства. Бизнес - план описывает процесс функционирования фирмы, показывает каким образом её руководители собираются д...
8087. Аудиторская проверка учета кредитов и займов 63.9 KB
  Аудиторская проверка учета кредитов и займов План Введение I. Планирование аудиторской проверки кредитов и займов II. Классификация видов нарушений при привлечении кредитов и займов III. Источники и методы получения аудиторских доказательств ...
8088. Аудиторская проверка учёта расчётных и кредитных операций 84 KB
  Аудиторская проверка учёта расчётных и кредитных операций. Задачи, объекты и источники информации. Проверка расчётов с поставщиками и подрядчиками, покупателями и заказчиками. Аудит расчётов с подотчётными лицами. Аудит креди...
8089. Понятия о методах и приёмах воспитания. Классификация методов воспитания 22.47 KB
  Понятия о методах и приёмах воспитания. Классификация методов воспитания Методы воспитания - это пути, способы достижения заданной цели воспитания. Применительно к школьной практике можно сказать также, что методы - это способы воздействия...
8090. Методы формирования сознания личности 23.9 KB
  Методы формирования сознания личности Методы формирования сознания очень важны для формирования чувств, эмоционального переживания. Если ученики остаются безразличными к педагогическому воздействию, то, как известно, процесс развивается медленно и р...
8091. Методы организации деятельности и поведения 24.93 KB
  Методы организации деятельности и поведения Воспитание должно формировать требуемый тип поведения. Не понятия, убеждения, а конкретные дела, поступки характеризуют воспитанность личности. В этой связи организация деятельности и формирование опыта по...