30564

Сходимость числового ряда. Гармонический ряд. Общий член и остаток ряда. Признаки сходимости рядов

Доклад

Математика и математический анализ

Гармонический ряд. Общий член и остаток ряда. Признаки сходимости рядов Определения.

Русский

2013-08-24

133.5 KB

8 чел.

1 сходимость числового ряда. Гармонический ряд. Общий член и остаток ряда. Признаки сходимости рядов

Определения.

Пусть задана бесконечная последовательность чисел:    u1, u2, …, un, 

Построим из этой последовательности выражение: u1+ u2 + u3 +…+ un +…

Это выражение называется числовым рядом, где слагаемые u1, u2, u3,… называются членами ряда, а член un  - его общим членом. Таким образом, можно сказать, что числовой ряд – это бесконечная сумма чисел

Числовой ряд часто записывается в виде .  Сумма конечного числа n  первых членов ряда называется n-ой частичной суммой ряда:  

Sn = u1 + u2 + … + un

Ряд называется сходящимся, если сумма первых его n членов при n®¥ стремится к конечному пределу S, называемому суммой ряда, и говорят, что ряд сходится

Если  не существует (или равен бесконечности), то ряд суммы не имеет, т.е. расходится.

Замечание 1. Перечисление членов ряда не всегда может начинаться при n=1. Часто первым является член ряда с номером n=0 или, например, n=2. В таком случае и записывают ряд в виде  или

Замечание 2. В формулах общего члена различных числовых рядов достаточно часто встречается знак факториала: 

n!=1234(n-1)n.

В частности, 1!=1, 2!=2, 3!=6 и т.д.;  (n+1)!=n!(n+1).  Считается, что 0!=1.

Иногда используют также знак двойного факториала четных и нечетных чисел:

(2n)!!=246(2n-2)(2n). В частности, (2n+2)!!=(2n)!!(2n+2).

(2n+1)!!=135(2n-1)(2n+1). В частности, (2n+3)!!=(2n+1)!!(2n+3).

При исследовании рядов основным вопросом является вопрос о сходимости и расходимости ряда. Непосредственное вычисление   на практике не всегда выполнимо, поэтому используются признаки, на основании которых можно решить вопрос о сходимости или расходимости ряда.

Следует отметить, что конечное число членов ряда влияет только на значение его суммы, но не на сам факт сходимости; таким образом, при исследовании ряда на сходимость  мы можем, если нужно, отбросить первые несколько членов этого ряда.

Гармонический ряд.

  Ряд

1 + 2+ 3+ ... + n +... ,

(1)

очевидно, расходится, но и ряд

(2)

составленный из обратных величин соответствующих членов ряда (1), также расходится.
  Чтобы доказать расходимость ряда (2), воспользуемся тем, что переменная величина

при неограниченном возрастании n стремится к неперову числу e как к своему пределу, всё время оставаясь меньше этого предела. Поэтому при любом положительном n имеем

.

  Отсюда

,

или

,

или

.

  Подставляя в последнее неравенство вместо n числа 1, 2, 3, 4, ..., получим неравенства:

  Складывая почленно эти неравенства, получим:

,

или

Sn>ln(n+1)


Но

,

а поэтому и

,

т.е. ряд (2) расходится.
  Ряд 
(2) называется гармоническим рядом.

Необходимый признак сходимости ряда 

(т.е. условие, при невыполнении которого ряд расходится):

Если ряд  сходится, то его общий член стремится к нулю при неограниченном возрастании n, т.е.

Следствие: 

если общий член ряда не стремится к нулю при n→∞, то ряд расходится:

 расходится

Указанный признак является необходимым, но недостаточным. Например, гармонический ряд:  

расходится, хотя  (расходимость гармонического ряда легко доказать с помощью интегрального признака – см. ниже)

Достаточные признаки сходимости рядов с положительными членами.

Рассмотрим числовые ряды с положительными членами:

  (1)

 (2)

Первый признак сравнения:

Если для n  n0   un  vn и ряд (2) сходится, то сходится также и ряд (1).

Если для n   n0   un    vn      и ряд (2) расходится, то расходится и ряд (1).

Второй признак сравнения:

Если существует конечный и отличный от нуля предел ,  то рассматриваемые ряды (1) и  (2) сходятся или расходятся одновременно.

Таким образом, чтобы установить сходимость или расходимость ряда, этот ряд сравнивают с каким-нибудь заведомо сходящимся или расходящимся рядом.

Для сравнения часто используются ряды:

1. Ряд   (|q| < 1), cоставленный из членов любой бесконечно убывающей геометрической прогрессии, является сходящимся.

2. Ряд Дирихле   сходится при р > 1,  расходится при р ≤ 1

В случае p=1 имеем гармонический ряд:

 .  Гармонический ряд расходится.

Замечание 1: Условие второго признака сравнения выполняется, в частности, когда величины  и  эквивалентны при n(, n), т.к. в этом случае l=1. Поэтому этот признак применяют, когда можно пренебречь младшими степенями n или воспользоваться таблицей эквивалентностей (см. тему «Предел функции»)

Замечание 2: Для применения первого признака сравнения часто используют следующие неравенства, выполняющиеся для достаточно больших n:

;  ;    и т.п

Признак Даламбера

Рассмотрим числовой ряд с положительными членами .

Если , то:  

ряд сходится, если l<1;  ряд расходится, если l>1; в случае l=1 вопрос о сходимости или расходимости ряда остается открытым.

Радикальный признак Коши.

Если для ряда  с положительными членами существует , то этот ряд сходится при l<1 и расходится при l>1. Если l=1, то вопрос о сходимости ряда остается открытым (нужны дополнительные исследования).

Интегральный признак Коши

Пусть члены ряда  положительны и не возрастают, т.е.  и пусть f(x) – такая непрерывная, положительная и невозрастающая функция, что f(1)=u1, f(2)=u2,…,f(n)=un,…

Тогда ряд  и несобственный интеграл  сходятся или расходятся одновременно (т.е. из сходимости интеграла следует сходимость ряда и наоборот).

Замечание. Нижним пределом интегрирования в интеграле может быть любое другое положительное число из области существования функции.

 

PAGE  7


 

А также другие работы, которые могут Вас заинтересовать

10305. Современная философия 12.45 KB
  Современная философия чрезвычайно многообразна. Вместе с тем в ней есть свои центры притяжения в виде относительно самостоятельных направлений или течений. Их тоже много но в плане самой общей картины можно ограничиться тремя: аналитическим феноменологическим и постм
10306. Раннегреческая философия (милетская и элейская школы философии) 13.1 KB
  Раннегреческая философия милетская и элейская школы философии Милетская школа существовала в Древней Греции в VI в. до н. э. Представителями данной школы являлись Фалес Анаксимандр Анаксимен. Философы милетской школы: выступали с материалистических позиций; занимал
10307. Философия французского просвещения 11.36 KB
  Во Франции философия являлась мощным общественно – культурным движением. Все идеи французских философов подготовили почву к великой французской революции. Приведем пример двух самых ярких просветителей этого времени. Вольтер французский философпросветитель. Боро
10308. Фихте Иоганн немецкий философ и общественный деятель 14.79 KB
  Фихте Иоганн немецкий философ и общественный деятель представитель нем. классического идеализма. Родился в крестьянской семье. Учился в университете Лейпцига. Под влиянием событий Великой французской революции Ф. написал работу посвященную защите свободы мысли. Вслед
10309. Фридрих Шеллинг 11.72 KB
  Фридрих Шеллинг оказался своеобразным связывающим звеном между философией Канта идеями Фихте. В центре его философских размышлений оказывается задача построить единую систему познания истины в частных областях. Все это реализуется в его “натурфилософииâ€. Основн...
10310. Формування стратегії розвитку туристичної дестинації «Подільські Товтри» 2.55 MB
  Розкити сутність понять «дестинація», «екологічна дестинація», «стратегія»; Визначити теоретичні основи формування стратегії розвитку туристичної дестинації; Сформулювати систему оціночних показників для визначення привабливості дестинації; Здійснити комплексний аналіз туристичного потенціалу дестинації «Подільські Товтри»; Визначити передумови для створення стратегії розвитку дестинації «Подільські Товтри»...
10311. Эпоха эллинизма 12.39 KB
  Эллинизм охватывающий период от завоеваний Александра Македонского до падения западной Римской Империи характеризует собой последующую античную философию. Сохранив многое из античной классики Эллинизм по существу завершил ее. Исходные принципы заложенные великими ...
10312. Давид Юм - философ английского Просвещения 15.5 KB
  Давид Юм философ английского Просвещения критиковал религиозный и философский догматизм который заложился в сознании людей. Он был философомскептиком антирационалистом. Юм известен своей мыслью о том что не существует объективной причинной связи вещей.Когда мы на
10313. Язык и мышление, их взаимосвязь 42.75 KB
  Язык и мышление Язык главная из знаковых систем человека важнейшее средство человеческого общения способ осуществления мышления. Человек единственной существо моделирующее внешний мир при помощи знаковых систем. В любом человеческом сообществе люди реагиру...