30568

Свойства функции распределения

Доклад

Математика и математический анализ

Свойства функции распределения : Свойство 1: 0 ≤ Fx ≤ 1. Свойство2: Fx2 ≥ Fx1 если x2 x1. Свойство3: 1Fx = 0 при x ≤ ; 2 Fx = 1 при x ≥ b. Свойство4: Fx0 = Fx0 0.

Русский

2013-08-24

51.52 KB

1 чел.

На доске:

Функция распределения: F(x) = P(X < x).

Свойства функции распределения :

Свойство 1: 0 ≤ F(x) ≤ 1.

Свойство2:  F(x2) ≥  F(x1), если x2 > x1.

Свойство3: 1)F(x) = 0 при xa; 2)  F(x) = 1 при x ≥  b.

Свойство4: F(x0) = F(x0 - 0).

Математическое ожидание:

M (X) = x1 p1 + x2 p2 + …+  xn pn .

Eсли дискретная случайная величина X принимает счетное множество возможных значений, то

,

Св-ва

Дисперсия:

1)D(X) = M[XM(X)]2.

2)D(X) = M(X2) – [M(X)]2.

Свойства дисперсии

Математическое ожидание непрерывных случайных величин

Если возможные значения принадлежат всей оси Ox , то

Дисперсия непрерывных случайных величин

 

Если возможные значения принадлежат всей оси Ox , то

Выступление:

Случайной величиной называется функция X(ω), определенная на некотором множестве элементарных событий Ω.

Случайные величины бывают дискретными и непрерывными.

Определение1.3: Случайная величина называется дискретной, если она принимает отдельные, изолированные возможные значения с определенными вероятностями.

Число возможных значений дискретной случайной величины может быть конечным или бесконечным (счетным).

Дискретными являются случайные величины в примерах 1,4,5,7.

Определение1.4:Случайная величина называется непрерывной, если она принимает все значения из некоторого конечного или бесконечного промежутка.

. Функция распределения вероятностей случайной величины и ее.

1:Функцией распределения называют функцию F(x), определяющую вероятность того, что случайная величина  X  в результате испытания примет значение, меньшее x, то есть F(x) = P(X < x).

Определение2.2:Случайная величина называется непрерывной, если ее функция распределения есть непрерывная, кусочно - дифференцируемая функция с непрерывной производной.

Свойство1:  Значения функции распределения принадлежат отрезку [0,1]:

0 ≤ F(x) ≤ 1.

Свойство2:  F(x)неубывающая функция, то есть

F(x2) ≥  F(x1), если x2 > x1

Свойство3: Если возможные значения случайной величины принадлежат интервалу (a,b), то 

  1.  F(x) = 0 при xa; 2)  F(x) = 1 при x ≥  b.

Свойство4: Функция распределения непрерывна слева, то есть F(x0) = F(x0 - 0).

 Математическое ожидание дискретной случайной величины

Математическим ожиданием дискретной случайной величины называют сумму произведений всех ее возможных значений на их вероятности.

Пусть случайная величина X может принимать только значения x1, x2, … xn , вероятности которых соответственно равны p1,  p2, … pn .  Тогда математическое ожидание M (X) случайной величины X определяется равенством

M (X) = x1 p1 + x2 p2 + …+  xn pn

Свойства математического ожидания

Свойство1: Математическое ожидание постоянной величины равно самой постоянной

Свойство2:Постоянный множитель можно выносить за знак математического ожидания

Свойство3:Математическое ожидание произведения двух независимых случайных величин равно произведению их математических ожиданий.

Свойство4:Математическое ожидание суммы двух случайных величин равно сумме их математических ожиданий.

Дисперсия дискретной случайной величины

Определение7.1: Отклонением называют разность между случайной величиной и ее математическим ожиданием: XM(X).

Свойство отклонения: Математическое ожидание отклонения равно нулю:

M[XM(X)] = 0.

Определение7.2:Дисперсией (рассеянием) дискретной случайной величины называют математическое ожидание квадрата отклонения случайной величины от ее математического ожидания:

D(X) = M[XM(X)]2

Для вычисления дисперсии часто удобно пользоваться другой формулой:

D(X) = M(X2) – [M(X)]2.

Доказательство: 

D(X) = M[X – M(X)]2=M[X2 - 2XM(X) + M2(X)]= M(X2) – 2M(X)M(X) + M2(X) = M(X2) – 2M2(X)+ M2(X) = M(X2)- M2(X).

Свойство1: Дисперсия постоянной величины С равна нулю

Свойство2:Постоянный множитель можно выносить за знак дисперсии, возводя его в квадрат

Свойство3:Дисперсия суммы двух независимых случайных величин равна сумме дисперсий этих величин.

Свойство4:Дисперсия разности двух независимых случайных величин равна сумме дисперсий этих величин.

Математическое ожидание и дисперсия непрерывных случайных величин

Определение9.1: Математическим ожиданием непрерывной случайной величины X, возможные значения которой принадлежат отрезку [a,b], называют определенный интеграл

Если возможные значения принадлежат всей оси Ox , то

Определение9.2: Дисперсией непрерывной случайной величины X, возможные значения которой принадлежат отрезку [a,b], называют определенный интеграл

Если возможные значения принадлежат всей оси Ox , то

Так как D(X) = M(X2) – [M(X)]2, то можно использовать следующие формулы для вычисления дисперсии:

или .

Дополнительно

Свойства функции распределения 

Доказательства:

1) Доказательство: Данное свойство вытекает из определения функции распределения как вероятности: вероятность всегда есть неотрицательное число, не превышающее единицы.

2) Доказательство: 

По теореме сложения для двух несовместных событий имеем

P(X < x2) = P(X < x1) + P(x1 ≤ X < x2).

Отсюда

P(X < x2) - P(X < x1) = P(x1 ≤ X < x2),

Или

F(x2) - F(x1) = P(x1 X < x2).

Так как любая вероятность число неотрицательное, то F(x2) -  F(x1) ≥ 0 , или  F(x2) ≥  F(x1) , что и требовалось доказать.

Следствие1: Вероятность того, что случайная величина примет значение, заключенное на интервале (a,b), равна приращению функции распределения на этом интервале:

P(a X < b) = F(b) - F(a).

Следствие2: Вероятность того, что непрерывная случайная величина X примет одно определенное значение, равна нулю.

Доказательство:

1) Если x1a , то событие X < x1 невозможно и, следовательно, вероятность его равна нулю.

2) Если x2b , то событие X < x2 достоверно и, следовательно, вероятность его равна единице.

Следствие:  Если возможные значения непрерывной случайной величины расположены на всей оси x , то справедливы следующие предельные соотношения:

Свойства математического ожидания

Определение6.3:  Несколько случайных величин называют взаимно независимыми, если законы распределения любого числа из них не зависят от того, какие возможные значения приняли остальные величины.

Дисперсия дискретной случайной величины

Свойство отклонения: Математическое ожидание отклонения равно нулю:

M[XM(X)] = 0.

Доказательство: Пользуясь свойствами математического ожидания и тем, что M(X)- постоянная величина, имеем

M[XM(X)] = M(X) – M[M(X)] = M(X) –M(X)= 0.


 

А также другие работы, которые могут Вас заинтересовать

45490. Моделирование систем массового обслуживания 50.5 KB
  Моделирование систем массового обслуживания Понятия СМО: каналы: горячие тут же подключаются холодные нужен переходный период источник заявок заявки клиенты очереди ограниченные неограниченные дисциплина обслуживания FIFO первым пришел первым ушел LIFO последним пришел первым ушел KB короткие вперед отказы поток обслуженных заявок нетерпеливые заявки стояли но ушли Система должна функционировать в определенных интересах: клиента владельца Судить о результатах работы СМО можно по показателям....
45491. Моделирование случайных чисел с заданным 34.5 KB
  Для этого непрерывный закон распределения вероятности события дискретизируем. hi высота iого столбца fx распределение вероятности показывает насколько вероятно некоторое событие. Если точка в пересечении этих двух координат лежит ниже кривой плотности вероятности то событие X произошло иначе нет. Метод взятия обратной функции Допустим задан интегральный закон распределения вероятности где fx функция плотности вероятности.
45492. Оценка точности модели 76 KB
  Преобразование Фурье Преобразование Фурье Модель сигнала Способ основывается на том что в любом сигнале присутствуют гармонические составляющие. Сумма гармоник с соответствующими весами составляет модель сигнала. Пусть задан сигнал: Определяем время рассмотрения сигнала: если сигнал периодический то время рассмотрения равно периоду p сигнала; b если сигнал непериодический то периодом сигнала считается все время его рассмотрения. Отметим важную особенность данного способа представления вместо всего сигнала во всех его подробностях...
45493. Регрессионные модели 85.5 KB
  Линейная одномерная модель: y =0 1 x Ei = Yi 0 1 Xi i = 1n где n число снятых экспериментально точек. Ошибки всех точек i от 1 до n следует сложить. Найдем значение sigm по формуле: Если в интервал Yэ Yт Yэ попадает 67 точек и более то выдвинутая нами гипотеза принимается. Если требуется большая уверенность в результате то используют дополнительное условие: в интервал Yэ 2 Yт Yэ 2 должны попасть 95 экспериментальных точек.
45494. Методы построения датчиков случайных чисел 75.5 KB
  Генератор случайных чисел ГСЧ Основа метода МонтеКарло ГСЧ равномерно распределенных в интервале 01. Такая последовательность чисел должна обладать математическим ожиданием и дисперсией Если окажется что случайные числа должны быть распределены в другом интервале то преобразование имеет вид: ГСЧ ррb x:= b r Пример: x:= 313r r:=0 x:=3r:=1 x:=10r:=0. ГСЧ порождает случайный поток событий с равномерным законом распределения. ГСЧ делятся на: физические; табличные; алгоритмические.
45495. Общие принципы построения моделирующих алгоритмов 47.5 KB
  Общие принципы построения моделирующих алгоритмов Проблема при составлении алгоритмов на последовательной машине состоит в том что при моделировании необходимо отслеживать множество параллельных процессов во времени. Основные методы Принцип Принцип особых состояний Принцип последовательной проводки заявок Принцип параллельной работы объектов Принцип Определение состояния системы в фиксированные моменты времени: t t t2 Особенности: самый универсальный и простой метод описывает широкий класс объектов Недостатки: самый...
45496. Иерархия протоколов 304 KB
  Информационная совместимость – это правила передачи информации от одного узла к другому. Для того чтобы передать информацию от одного узла другому используют как минимум три уровня: физический; канальный; сетевой; На физическом уровне описаны характеристики передающей среды Основной задачей канального уровня является преобразование физической среды в канал передачи данных а так же выявление ошибок и деление информации на кадры. Кадр – единица измерения для передачи информации для сетей. Первые четыре уровня обеспечивают...
45497. Теоретические основы передачи данных 378.5 KB
  Ограничения на пропускную способность передачи данных.5c ∑ n sin2pnft∑ bncos2pnft f – частота nbn – амплитуды nой гармоники t – время передачи сигнала gt – определенное ограничение на пропускную способность. При этом скорость передачи информации зависит от способа кодирования и скорости изменения кодирования.
45498. Магистрали 261 KB
  Основное достижение – это применение одного канала для передачи сигналов между различными источниками и приемниками. Основано на разделении передачи сигналов от разных источников по различным несущим частотам. Это связано с тем что пропускная способность составляет 25000 Гц и за счет этого в оптических каналах скорость передачи на порядок выше. Это связано с тем что после получения канала с аналоговой петли скорость передачи данных может быть увеличена в несколько раз поэтому для цифровых каналов связи применяется метод мультиплексирования...