30568

Свойства функции распределения

Доклад

Математика и математический анализ

Свойства функции распределения : Свойство 1: 0 ≤ Fx ≤ 1. Свойство2: Fx2 ≥ Fx1 если x2 x1. Свойство3: 1Fx = 0 при x ≤ ; 2 Fx = 1 при x ≥ b. Свойство4: Fx0 = Fx0 0.

Русский

2013-08-24

51.52 KB

1 чел.

На доске:

Функция распределения: F(x) = P(X < x).

Свойства функции распределения :

Свойство 1: 0 ≤ F(x) ≤ 1.

Свойство2:  F(x2) ≥  F(x1), если x2 > x1.

Свойство3: 1)F(x) = 0 при xa; 2)  F(x) = 1 при x ≥  b.

Свойство4: F(x0) = F(x0 - 0).

Математическое ожидание:

M (X) = x1 p1 + x2 p2 + …+  xn pn .

Eсли дискретная случайная величина X принимает счетное множество возможных значений, то

,

Св-ва

Дисперсия:

1)D(X) = M[XM(X)]2.

2)D(X) = M(X2) – [M(X)]2.

Свойства дисперсии

Математическое ожидание непрерывных случайных величин

Если возможные значения принадлежат всей оси Ox , то

Дисперсия непрерывных случайных величин

 

Если возможные значения принадлежат всей оси Ox , то

Выступление:

Случайной величиной называется функция X(ω), определенная на некотором множестве элементарных событий Ω.

Случайные величины бывают дискретными и непрерывными.

Определение1.3: Случайная величина называется дискретной, если она принимает отдельные, изолированные возможные значения с определенными вероятностями.

Число возможных значений дискретной случайной величины может быть конечным или бесконечным (счетным).

Дискретными являются случайные величины в примерах 1,4,5,7.

Определение1.4:Случайная величина называется непрерывной, если она принимает все значения из некоторого конечного или бесконечного промежутка.

. Функция распределения вероятностей случайной величины и ее.

1:Функцией распределения называют функцию F(x), определяющую вероятность того, что случайная величина  X  в результате испытания примет значение, меньшее x, то есть F(x) = P(X < x).

Определение2.2:Случайная величина называется непрерывной, если ее функция распределения есть непрерывная, кусочно - дифференцируемая функция с непрерывной производной.

Свойство1:  Значения функции распределения принадлежат отрезку [0,1]:

0 ≤ F(x) ≤ 1.

Свойство2:  F(x)неубывающая функция, то есть

F(x2) ≥  F(x1), если x2 > x1

Свойство3: Если возможные значения случайной величины принадлежат интервалу (a,b), то 

  1.  F(x) = 0 при xa; 2)  F(x) = 1 при x ≥  b.

Свойство4: Функция распределения непрерывна слева, то есть F(x0) = F(x0 - 0).

 Математическое ожидание дискретной случайной величины

Математическим ожиданием дискретной случайной величины называют сумму произведений всех ее возможных значений на их вероятности.

Пусть случайная величина X может принимать только значения x1, x2, … xn , вероятности которых соответственно равны p1,  p2, … pn .  Тогда математическое ожидание M (X) случайной величины X определяется равенством

M (X) = x1 p1 + x2 p2 + …+  xn pn

Свойства математического ожидания

Свойство1: Математическое ожидание постоянной величины равно самой постоянной

Свойство2:Постоянный множитель можно выносить за знак математического ожидания

Свойство3:Математическое ожидание произведения двух независимых случайных величин равно произведению их математических ожиданий.

Свойство4:Математическое ожидание суммы двух случайных величин равно сумме их математических ожиданий.

Дисперсия дискретной случайной величины

Определение7.1: Отклонением называют разность между случайной величиной и ее математическим ожиданием: XM(X).

Свойство отклонения: Математическое ожидание отклонения равно нулю:

M[XM(X)] = 0.

Определение7.2:Дисперсией (рассеянием) дискретной случайной величины называют математическое ожидание квадрата отклонения случайной величины от ее математического ожидания:

D(X) = M[XM(X)]2

Для вычисления дисперсии часто удобно пользоваться другой формулой:

D(X) = M(X2) – [M(X)]2.

Доказательство: 

D(X) = M[X – M(X)]2=M[X2 - 2XM(X) + M2(X)]= M(X2) – 2M(X)M(X) + M2(X) = M(X2) – 2M2(X)+ M2(X) = M(X2)- M2(X).

Свойство1: Дисперсия постоянной величины С равна нулю

Свойство2:Постоянный множитель можно выносить за знак дисперсии, возводя его в квадрат

Свойство3:Дисперсия суммы двух независимых случайных величин равна сумме дисперсий этих величин.

Свойство4:Дисперсия разности двух независимых случайных величин равна сумме дисперсий этих величин.

Математическое ожидание и дисперсия непрерывных случайных величин

Определение9.1: Математическим ожиданием непрерывной случайной величины X, возможные значения которой принадлежат отрезку [a,b], называют определенный интеграл

Если возможные значения принадлежат всей оси Ox , то

Определение9.2: Дисперсией непрерывной случайной величины X, возможные значения которой принадлежат отрезку [a,b], называют определенный интеграл

Если возможные значения принадлежат всей оси Ox , то

Так как D(X) = M(X2) – [M(X)]2, то можно использовать следующие формулы для вычисления дисперсии:

или .

Дополнительно

Свойства функции распределения 

Доказательства:

1) Доказательство: Данное свойство вытекает из определения функции распределения как вероятности: вероятность всегда есть неотрицательное число, не превышающее единицы.

2) Доказательство: 

По теореме сложения для двух несовместных событий имеем

P(X < x2) = P(X < x1) + P(x1 ≤ X < x2).

Отсюда

P(X < x2) - P(X < x1) = P(x1 ≤ X < x2),

Или

F(x2) - F(x1) = P(x1 X < x2).

Так как любая вероятность число неотрицательное, то F(x2) -  F(x1) ≥ 0 , или  F(x2) ≥  F(x1) , что и требовалось доказать.

Следствие1: Вероятность того, что случайная величина примет значение, заключенное на интервале (a,b), равна приращению функции распределения на этом интервале:

P(a X < b) = F(b) - F(a).

Следствие2: Вероятность того, что непрерывная случайная величина X примет одно определенное значение, равна нулю.

Доказательство:

1) Если x1a , то событие X < x1 невозможно и, следовательно, вероятность его равна нулю.

2) Если x2b , то событие X < x2 достоверно и, следовательно, вероятность его равна единице.

Следствие:  Если возможные значения непрерывной случайной величины расположены на всей оси x , то справедливы следующие предельные соотношения:

Свойства математического ожидания

Определение6.3:  Несколько случайных величин называют взаимно независимыми, если законы распределения любого числа из них не зависят от того, какие возможные значения приняли остальные величины.

Дисперсия дискретной случайной величины

Свойство отклонения: Математическое ожидание отклонения равно нулю:

M[XM(X)] = 0.

Доказательство: Пользуясь свойствами математического ожидания и тем, что M(X)- постоянная величина, имеем

M[XM(X)] = M(X) – M[M(X)] = M(X) –M(X)= 0.


 

А также другие работы, которые могут Вас заинтересовать

61970. Обозначение мягкости согласных с помощью буквы Ю 19.63 KB
  Задание выполним в парах. Задание восстановите последовательность. Каков первый пункт Предлагаю выполнить задание в парах. Я приготовила для вас задание повышенной сложности Чем отличается это задание от предыдущих...
61971. Деление на 8 равных частей 41.68 KB
  Учащиеся проверяют свою готовность к уроку. Учащиеся приветствуют учителя. Учащиеся отвечают на вопросы учителя. Учащиеся выполняют указания учителя.
61973. Нарезание крепежной резьбы 25.05 KB
  Цели урока: Обучающая: научить учащихся нарезать наружную резьбу круглой плашкой. Пользоваться справочными таблицами правильно и безопасно с точки зрения т б применять режущий и мерительный инструмент для нарезании наружной резьбы.
61975. Чтение схемы по тяговой подстанции. Перечень элементов 31.3 KB
  Технологическая карта учебного занятия это способ графического проектирования учебного занятия таблица позволяющая структурировать учебное занятие по выбранным преподавателем параметрам.
61976. Урок с использованием профессионально-направленной лексики и элементов деловой игры в ситуациях коммуникативного общения 47.02 KB
  Технологическая карта урока Тема урока: Introduсtion to the cr Знакомство с автомобилем Цели урока: Развитие знаний о конструкциях автомобилей через овладение новыми лексическими единицами по теме “ Introduсtion to the cr †развитие навыков монологической речи Задачи урока: Обучающие: Правильное произношение новых терминов связанных с функционльностью автомобиля и практика речевой деятельности: Усвоение и активизация лексики по теме урока Повторение старого и дальнейшее закрепление нового лексического материала по...
61978. Я – гражданин Республики Беларусь 21.94 KB
  Ход учебного занятия Сообщение темы и цели учебного занятия. Тема нашего сегодняшнего урока Я гражданин Республики Беларусь. Мы носим имя гражданин Республики Беларусь. Беседа Наша Родина Беларусь.