30568

Свойства функции распределения

Доклад

Математика и математический анализ

Свойства функции распределения : Свойство 1: 0 ≤ Fx ≤ 1. Свойство2: Fx2 ≥ Fx1 если x2 x1. Свойство3: 1Fx = 0 при x ≤ ; 2 Fx = 1 при x ≥ b. Свойство4: Fx0 = Fx0 0.

Русский

2013-08-24

51.52 KB

1 чел.

На доске:

Функция распределения: F(x) = P(X < x).

Свойства функции распределения :

Свойство 1: 0 ≤ F(x) ≤ 1.

Свойство2:  F(x2) ≥  F(x1), если x2 > x1.

Свойство3: 1)F(x) = 0 при xa; 2)  F(x) = 1 при x ≥  b.

Свойство4: F(x0) = F(x0 - 0).

Математическое ожидание:

M (X) = x1 p1 + x2 p2 + …+  xn pn .

Eсли дискретная случайная величина X принимает счетное множество возможных значений, то

,

Св-ва

Дисперсия:

1)D(X) = M[XM(X)]2.

2)D(X) = M(X2) – [M(X)]2.

Свойства дисперсии

Математическое ожидание непрерывных случайных величин

Если возможные значения принадлежат всей оси Ox , то

Дисперсия непрерывных случайных величин

 

Если возможные значения принадлежат всей оси Ox , то

Выступление:

Случайной величиной называется функция X(ω), определенная на некотором множестве элементарных событий Ω.

Случайные величины бывают дискретными и непрерывными.

Определение1.3: Случайная величина называется дискретной, если она принимает отдельные, изолированные возможные значения с определенными вероятностями.

Число возможных значений дискретной случайной величины может быть конечным или бесконечным (счетным).

Дискретными являются случайные величины в примерах 1,4,5,7.

Определение1.4:Случайная величина называется непрерывной, если она принимает все значения из некоторого конечного или бесконечного промежутка.

. Функция распределения вероятностей случайной величины и ее.

1:Функцией распределения называют функцию F(x), определяющую вероятность того, что случайная величина  X  в результате испытания примет значение, меньшее x, то есть F(x) = P(X < x).

Определение2.2:Случайная величина называется непрерывной, если ее функция распределения есть непрерывная, кусочно - дифференцируемая функция с непрерывной производной.

Свойство1:  Значения функции распределения принадлежат отрезку [0,1]:

0 ≤ F(x) ≤ 1.

Свойство2:  F(x)неубывающая функция, то есть

F(x2) ≥  F(x1), если x2 > x1

Свойство3: Если возможные значения случайной величины принадлежат интервалу (a,b), то 

  1.  F(x) = 0 при xa; 2)  F(x) = 1 при x ≥  b.

Свойство4: Функция распределения непрерывна слева, то есть F(x0) = F(x0 - 0).

 Математическое ожидание дискретной случайной величины

Математическим ожиданием дискретной случайной величины называют сумму произведений всех ее возможных значений на их вероятности.

Пусть случайная величина X может принимать только значения x1, x2, … xn , вероятности которых соответственно равны p1,  p2, … pn .  Тогда математическое ожидание M (X) случайной величины X определяется равенством

M (X) = x1 p1 + x2 p2 + …+  xn pn

Свойства математического ожидания

Свойство1: Математическое ожидание постоянной величины равно самой постоянной

Свойство2:Постоянный множитель можно выносить за знак математического ожидания

Свойство3:Математическое ожидание произведения двух независимых случайных величин равно произведению их математических ожиданий.

Свойство4:Математическое ожидание суммы двух случайных величин равно сумме их математических ожиданий.

Дисперсия дискретной случайной величины

Определение7.1: Отклонением называют разность между случайной величиной и ее математическим ожиданием: XM(X).

Свойство отклонения: Математическое ожидание отклонения равно нулю:

M[XM(X)] = 0.

Определение7.2:Дисперсией (рассеянием) дискретной случайной величины называют математическое ожидание квадрата отклонения случайной величины от ее математического ожидания:

D(X) = M[XM(X)]2

Для вычисления дисперсии часто удобно пользоваться другой формулой:

D(X) = M(X2) – [M(X)]2.

Доказательство: 

D(X) = M[X – M(X)]2=M[X2 - 2XM(X) + M2(X)]= M(X2) – 2M(X)M(X) + M2(X) = M(X2) – 2M2(X)+ M2(X) = M(X2)- M2(X).

Свойство1: Дисперсия постоянной величины С равна нулю

Свойство2:Постоянный множитель можно выносить за знак дисперсии, возводя его в квадрат

Свойство3:Дисперсия суммы двух независимых случайных величин равна сумме дисперсий этих величин.

Свойство4:Дисперсия разности двух независимых случайных величин равна сумме дисперсий этих величин.

Математическое ожидание и дисперсия непрерывных случайных величин

Определение9.1: Математическим ожиданием непрерывной случайной величины X, возможные значения которой принадлежат отрезку [a,b], называют определенный интеграл

Если возможные значения принадлежат всей оси Ox , то

Определение9.2: Дисперсией непрерывной случайной величины X, возможные значения которой принадлежат отрезку [a,b], называют определенный интеграл

Если возможные значения принадлежат всей оси Ox , то

Так как D(X) = M(X2) – [M(X)]2, то можно использовать следующие формулы для вычисления дисперсии:

или .

Дополнительно

Свойства функции распределения 

Доказательства:

1) Доказательство: Данное свойство вытекает из определения функции распределения как вероятности: вероятность всегда есть неотрицательное число, не превышающее единицы.

2) Доказательство: 

По теореме сложения для двух несовместных событий имеем

P(X < x2) = P(X < x1) + P(x1 ≤ X < x2).

Отсюда

P(X < x2) - P(X < x1) = P(x1 ≤ X < x2),

Или

F(x2) - F(x1) = P(x1 X < x2).

Так как любая вероятность число неотрицательное, то F(x2) -  F(x1) ≥ 0 , или  F(x2) ≥  F(x1) , что и требовалось доказать.

Следствие1: Вероятность того, что случайная величина примет значение, заключенное на интервале (a,b), равна приращению функции распределения на этом интервале:

P(a X < b) = F(b) - F(a).

Следствие2: Вероятность того, что непрерывная случайная величина X примет одно определенное значение, равна нулю.

Доказательство:

1) Если x1a , то событие X < x1 невозможно и, следовательно, вероятность его равна нулю.

2) Если x2b , то событие X < x2 достоверно и, следовательно, вероятность его равна единице.

Следствие:  Если возможные значения непрерывной случайной величины расположены на всей оси x , то справедливы следующие предельные соотношения:

Свойства математического ожидания

Определение6.3:  Несколько случайных величин называют взаимно независимыми, если законы распределения любого числа из них не зависят от того, какие возможные значения приняли остальные величины.

Дисперсия дискретной случайной величины

Свойство отклонения: Математическое ожидание отклонения равно нулю:

M[XM(X)] = 0.

Доказательство: Пользуясь свойствами математического ожидания и тем, что M(X)- постоянная величина, имеем

M[XM(X)] = M(X) – M[M(X)] = M(X) –M(X)= 0.


 

А также другие работы, которые могут Вас заинтересовать

62976. Решение биквадратного уравнения в EXCEL 76 KB
  Здесь предусмотрены все пять случаев, которые могут встретиться при решении биквадратного уравнения, изложенных подробно в разделе: Алгоритм решения биквадратного уравнения. На рисунке выше коэффициенты указанных уравнений введены в таблицу Excel.
62979. Будова та різноманітність квіток 779.99 KB
  Мета: поглибити знання учнів про генеративні органи рослини; сформувати поняття про квітку як основний генеративний орган вивчити будову квітки їх різноманітність біологічне значення; формувати вміння розпізнавані квітки одностатеві й двостатеві...
62980. Використання інформаційно-комунікаційних технологій у викладанні географії 23.5 KB
  Одним із напрямів модернізації системи географічної освіти у школі є впровадження компютерних технологій у навчальний процес. Сучасне життя вимагає від учителів освоєння компютерної техніки тому що багатьом учням які вже достатньою...
62982. П’ятеро промінчиків 2.25 MB
  Мета: пояснити учням функції і значення очей для людини. Агітатор: Дізнатися все про очі допоможуть загадки. Послухайте їх: Одне одного не бачать Але можна і пробачить: Нерозлучні довгі роки Хоч розбіглись...
62983. Вечір золотого романсу 1.29 MB
  Мета: поглибити знання учнів з теми «Лірична поезія»; розвивати творчі здібності, навички виразного читання; виховувати естетичні смаки, найкращі людські якості: любов до прекрасного, патріотизм, людяність.