30574

Линейные пространства. Определение, примеры, простейшие свойства. Единственность нейтрального, единственность противоположного элемента. Линейная зависимость. Координаты векторов и их связь при переходе к другому базису

Доклад

Математика и математический анализ

Для каждого вектора существует единственный противоположный вектор. Нулевой вектор 0 равен произведению произвольного вектора х на число 0. Действительно пусть существует два таких вектора 01 и 02. Для каждого вектора существует единственный противоположный вектор.

Русский

2013-08-24

46.5 KB

12 чел.

Линейные пространства. Определение, примеры, простейшие свойства. Единственность нейтрального, единственность противоположного элемента. Линейная зависимость. Координаты векторов и их связь при переходе к другому базису.

Доска

Аксиомы:

  1.  α (x + y) = αx + αy
  2.  (α + β) x = αx + βx
  3.  α(βx) = (αβ)x
  4.  1x = x

Теорема 1. Существует единственный нулевой (нейтральный по сложению) вектор.

01 + 02 = 01

01 + 02 = 02

Отсюда  01 = 02

Теорема 2. Для каждого вектора существует единственный противоположный вектор.

x + a + y = (x + a) + y = y

x + a + y = x + (a + y) = x

Отсюда x = y

Теорема 3. Нулевой вектор 0 равен произведению произвольного вектора х на число 0.

пусть y = -x

Тогда 0x = 0x + x + y = 0x + 1x + y = (0 + 1)x + y = 1x + y = x + y = 0

Базис

Пусть {ei} - базис, x – вектор, x = и x = .

= 0.

Отсюда все = 0

Выступление

Линейное пространство.

Пусть есть L – коммутативная группа относительно сложения и P – некоторое поле.

Пусть есть закон, который для α из P и x из L сопоставляет αx из L.

Тогда L называется линейным пространством над полем P, если выполнены 4 аксиомы

Примеры.

  1.  Множество векторов на плоскости (операции определяются как в аналитической геометрии).
  2.  Арифметическое линейное пространство Rn (с почленным сложением и умножением на число).
  3.  Множество полиномов степени, не превышающей некоторое число n (с обычными операциями).

Теорема 1.

Существует единственный нулевой (нейтральный по сложению) вектор.

Действительно, пусть существует два таких вектора – 01 и 02. Тогда с одной стороны, 01 + 02 = 01, с другой – 01 + 02 = 02, отсюда 01 = 02.

Теорема 2.

Для каждого вектора существует единственный противоположный вектор.

Действительно, пусть a + x = x + a = 0 и a + y = y + a = 0.

С одной стороны, x + a + y = (x + a) + y = y. С другой стороны, x + a + y = x + (a + y) = x.

Отсюда x = y.

Теорема 3.

Нулевой вектор 0 равен произведению произвольного вектора х на число 0.

Действительно, пусть y = -x. Тогда 0x = 0x + x + y = 0x + 1x + y = (0 + 1)x + y = 1x + y = x + y = 0.

Рассмотрим множество векторов {xi} из L.

Их линейная комбинация – сумма , где αi – произвольные числа.

Линейная комбинация называется тривиальной, если все коэффициенты в ней равны нулю.

Множество векторов называется линейно зависимым, если некоторая их нетривиальная линейная комбинация равна нулевому вектору.

Множество векторов называется линейно независимым, если только их тривиальная линейная комбинация равна нулевому вектору.

Множество векторов линейно зависимо тогда и только тогда, когда один из них линейно выражается через остальные.

Базис – линейно независимое множество векторов, такое что любой вектор пространства является их линейной комбинацией.

Коэффициенты в линейном разложении вектора по базису называются координатами вектора в базисе.

Координаты вектора в базисе определяются единственным образом. Действительно, пусть {ei} – базис, x – вектор, x = и x = . Вычитая одно равенство из другого, получаем 0 = . Отсюда все = 0, т. к. вектора базиса линейно независимы.

Пусть {ai} и {bi} – базисы. Матрица перехода от базиса {ai} к {bi} базису – матрица T, в i-м столбце которой записаны координаты bi в базисе {ai}.

Пусть { β i} – координаты вектора x в базисе {bi}. Тогда x = . Отсюда αj =- координаты x в базисе {ai}.

В матричном виде: α = . (Здесь α и β – вектора-столбцы).


 

А также другие работы, которые могут Вас заинтересовать

19258. Модель сечения выведения для быстрых нейтронов: основные предположения, границы применимости. Сечение выведения смесей и гетерогенных сред 78 KB
  Лекция 6. Модель сечения выведения для быстрых нейтронов: основные предположения границы применимости. Сечение выведения смесей и гетерогенных сред. 6.1. Модель сечения выведения для быстрых нейтронов. Модель сечения выведения приближенный метод вычисления мо
19259. Модификация модели сечения выведения для различных спектров быстрых нейтронов и неводородосодержащих сред 37.5 KB
  Лекция 7. Модификация модели сечения выведения для различных спектров быстрых нейтронов и неводородосодержащих сред. 7.1. Модификация модели сечения выведения для различных спектров. При получении значений сечений выведения для задач реакторной защиты обычно пр...
19260. Основные процессы взаимодействия гамма-квантов с веществом. Газокинетическое уравнение переноса гамма-квантов в задачах с внешним источником 124 KB
  Лекция 8. Основные процессы взаимодействия гаммаквантов с веществом. Газокинетическое уравнение переноса гаммаквантов в задачах с внешним источником. 8.1. Понятие гаммаизлучения. Электромагнитное излучение высокой энергии высокой частоты испускаемое возбуж
19261. Модель факторов накопления гамма-квантов. Аналитические аппроксимации факторов накопления гамма-квантов. Фактор накопления для многослойных систем 54.5 KB
  Лекция 9. Модель факторов накопления гаммаквантов. Аналитические аппроксимации факторов накопления гаммаквантов. Фактор накопления для многослойных систем. 9.1. Расчет защиты от фотонного излучения. Для расчета мощности дозы гаммаквантов за защитой модель сеч
19262. Многогрупповое приближение. Технология получения групповых констант. Понятие спектра свертки. Стандартные спектры. Библиотеки групповых констант нейтронов. Комбинированные библиотеки констант 139.5 KB
  Лекция 10. Многогрупповое приближение. Технология получения групповых констант. Понятие спектра свертки. Стандартные спектры. Библиотеки групповых констант нейтронов. Комбинированные библиотеки констант. 10.1. Многогрупповое приближение. Аналитическое решени...
19263. Методы моментов, сферических гармоник. Уравнение переноса в Р1-приближении. Границы применимости диффузионного приближения в задачах расчета защит 82.5 KB
  Лекция 11. Методы моментов сферических гармоник. Уравнение переноса в Р1приближении. Границы применимости диффузионного приближения в задачах расчета защит. 11.1. Методы моментов. Методы моментов или полиномиальные методы основаны на представлении угловой завис
19264. Метод дискретных ординат, SN-метод. Понятие квадратуры. Квадратуры Гаусса 48.5 KB
  Лекция 12. Метод дискретных ординат SNметод. Понятие квадратуры. Квадратуры Гаусса. 12.1. Особенности методов дискретных ординат. Методы дискретных ординат и связанные с ними методы получения численных решений уравнения переноса широко используются в реакторных р...
19265. Аппроксимации пространственной зависимости потока в уравнении переноса. Операторный вид уравнения переноса 97 KB
  Лекция 13. Аппроксимации пространственной зависимости потока в уравнении переноса. Операторный вид уравнения переноса. 13.1. Уравнение переноса в одномерной плоской геометрии. Одномерная плоская геометрия система бесконечных параллельных пластин частный случ...
19266. Организация итерационного процесса. Проблемы сходимости численных схем. Улучшенные итерационные методы. Внутренние и внешние итерации 89.5 KB
  Лекция 14. Организация итерационного процесса. Проблемы сходимости численных схем. Улучшенные итерационные методы. Внутренние и внешние итерации. 14.1. Прямой метод решения уравнений в матричной форме. Систему конечноразностных уравнений записанную в матричной