30574

Линейные пространства. Определение, примеры, простейшие свойства. Единственность нейтрального, единственность противоположного элемента. Линейная зависимость. Координаты векторов и их связь при переходе к другому базису

Доклад

Математика и математический анализ

Для каждого вектора существует единственный противоположный вектор. Нулевой вектор 0 равен произведению произвольного вектора х на число 0. Действительно пусть существует два таких вектора 01 и 02. Для каждого вектора существует единственный противоположный вектор.

Русский

2013-08-24

46.5 KB

12 чел.

Линейные пространства. Определение, примеры, простейшие свойства. Единственность нейтрального, единственность противоположного элемента. Линейная зависимость. Координаты векторов и их связь при переходе к другому базису.

Доска

Аксиомы:

  1.  α (x + y) = αx + αy
  2.  (α + β) x = αx + βx
  3.  α(βx) = (αβ)x
  4.  1x = x

Теорема 1. Существует единственный нулевой (нейтральный по сложению) вектор.

01 + 02 = 01

01 + 02 = 02

Отсюда  01 = 02

Теорема 2. Для каждого вектора существует единственный противоположный вектор.

x + a + y = (x + a) + y = y

x + a + y = x + (a + y) = x

Отсюда x = y

Теорема 3. Нулевой вектор 0 равен произведению произвольного вектора х на число 0.

пусть y = -x

Тогда 0x = 0x + x + y = 0x + 1x + y = (0 + 1)x + y = 1x + y = x + y = 0

Базис

Пусть {ei} - базис, x – вектор, x = и x = .

= 0.

Отсюда все = 0

Выступление

Линейное пространство.

Пусть есть L – коммутативная группа относительно сложения и P – некоторое поле.

Пусть есть закон, который для α из P и x из L сопоставляет αx из L.

Тогда L называется линейным пространством над полем P, если выполнены 4 аксиомы

Примеры.

  1.  Множество векторов на плоскости (операции определяются как в аналитической геометрии).
  2.  Арифметическое линейное пространство Rn (с почленным сложением и умножением на число).
  3.  Множество полиномов степени, не превышающей некоторое число n (с обычными операциями).

Теорема 1.

Существует единственный нулевой (нейтральный по сложению) вектор.

Действительно, пусть существует два таких вектора – 01 и 02. Тогда с одной стороны, 01 + 02 = 01, с другой – 01 + 02 = 02, отсюда 01 = 02.

Теорема 2.

Для каждого вектора существует единственный противоположный вектор.

Действительно, пусть a + x = x + a = 0 и a + y = y + a = 0.

С одной стороны, x + a + y = (x + a) + y = y. С другой стороны, x + a + y = x + (a + y) = x.

Отсюда x = y.

Теорема 3.

Нулевой вектор 0 равен произведению произвольного вектора х на число 0.

Действительно, пусть y = -x. Тогда 0x = 0x + x + y = 0x + 1x + y = (0 + 1)x + y = 1x + y = x + y = 0.

Рассмотрим множество векторов {xi} из L.

Их линейная комбинация – сумма , где αi – произвольные числа.

Линейная комбинация называется тривиальной, если все коэффициенты в ней равны нулю.

Множество векторов называется линейно зависимым, если некоторая их нетривиальная линейная комбинация равна нулевому вектору.

Множество векторов называется линейно независимым, если только их тривиальная линейная комбинация равна нулевому вектору.

Множество векторов линейно зависимо тогда и только тогда, когда один из них линейно выражается через остальные.

Базис – линейно независимое множество векторов, такое что любой вектор пространства является их линейной комбинацией.

Коэффициенты в линейном разложении вектора по базису называются координатами вектора в базисе.

Координаты вектора в базисе определяются единственным образом. Действительно, пусть {ei} – базис, x – вектор, x = и x = . Вычитая одно равенство из другого, получаем 0 = . Отсюда все = 0, т. к. вектора базиса линейно независимы.

Пусть {ai} и {bi} – базисы. Матрица перехода от базиса {ai} к {bi} базису – матрица T, в i-м столбце которой записаны координаты bi в базисе {ai}.

Пусть { β i} – координаты вектора x в базисе {bi}. Тогда x = . Отсюда αj =- координаты x в базисе {ai}.

В матричном виде: α = . (Здесь α и β – вектора-столбцы).


 

А также другие работы, которые могут Вас заинтересовать

35976. Экономическая классификация природных ресурсов 46 KB
  Классификация природных ресурсов по происхождению. При строгом контроле за соблюдением этих норм истощения лесных ресурсов не происходит. Каждый ландшафт или природнотерриториальный комплекс обладает определенным набором разнообразных видов природных ресурсов.
35980. Личность в системе межличностных отношений 40 KB
  Процесс обучения его сущность функции виды 2. Процесс обучения его сущность функции виды Дидактика это наука об обучении и образовании их целям содержании методах средствах и организационных формах. Дидактика это область педагогики исследующая закономерности процесса обучения. Предмет дидактики закономерности и принципы обучения его цели научные основы содержания образования методы формы средства.
35981. Мотивационная сфера личности. Содержание образования как фундамент культуры личности 40 KB
  Содержание образования как фундамент культуры личности Образова́ние целенаправленный процесс воспитания и обучения в интересах человека общества государства сопровождающийся достижения гражданином обучающимся установленных государством образовательных уровней Культура это предпосылка и результат образованности человека. Под содержанием образования следует понимать: 1 систему научных знаний практических умений и навыков; 2 систему мировоззренческих и нравственноэстетических идей которые необходимо приобрести учащимся в процессе...
35982. Принципы научной лексикографии и фразеологии. Словари РЯ 45 KB
  Словари РЯ. Лингвистические словари бывают одноязычными двуязычными и многоязычными. К числу одноязычных лингвистических словарей относятся: словари синонимов омонимов антонимов паронимов исторические этимологические диалектологические фразеологические словари иностранных слов нормативные и др. Различаются словари академического типа и словарисправочники.