3072

Ресурсы для развития нетрадиционной энергетики

Доклад

Энергетика

Ресурсы для развития нетрадиционной энергетики. В понятие нетрадиционная энергетика мы будем вкладывать четыре основных направления. Возобновляемые источники энергии (солнечная энергия, ветровая, биомасса, геотермальная, низкопотенциальное тепло зем...

Русский

2012-10-24

21.44 KB

31 чел.

Ресурсы для развития нетрадиционной энергетики.

В понятие нетрадиционная энергетика мы будем вкладывать четыре основных направления.

Возобновляемые источники энергии (солнечная энергия, ветровая, биомасса, геотермальная, низкопотенциальное тепло земли, воды, воздуха, гидравлическая, включая мини-ГЭС, приливы, волны). Подчеркнем, что большие ГЭС обычно не включаются в возобновляемые источники энергии.

Вторичные возобновляемые источники энергии (твердые бытовые отходы - ТБО, тепло промышленных и бытовых стоков, тепло и газ вентиляции).

Еще одно направление: нетрадиционные технологии использования невозобновляемых и возобновляемых источников энергии (водородная энергетика; микроуголь; турбины в малой энергетике; газификация и пиролиз; каталитические методы сжигания и переработки органического топлива; синтетическое топливо - диметиловый эфир, метанол, этанол, моторные топлива).

Следующее направление - это энергетические установки (или преобразователи), которые существуют обычно независимо от вида энергии. К таким установкам следует отнести: тепловой насос, машину Стирлинга, вихревую трубку, гидропаровую турбину и установки прямого преобразования энергии - электрохимические установки и, прежде всего, топливные элементы, фотоэлектрические преобразователи, термоэлектрические генераторы, термоэмиссионные установки, МГД-генераторы

Нетрадиционная энергетика

Несмотря на то, что производство электрической и тепловой энергии на основе нетрадиционных возобновляемых источников энергии (НВИЭ) в российской электроэнергетике невелико, заинтересованность, однако, в создании новых энергоустановок нетрадиционной энергетики, как и во всем мире, непрерывно растет. В настоящее время эксплуатируются и строятся электрогенерирующие установки на возобновляемых источниках энергии региональными энергокомпаниямиКамчатскэнерго, Ставропольэнерго, Комиэнерго, Дагэнерго, Калмэнерго, Каббалкэнерго, Кубаньэнерго, Колэнерго, Янтарьэнерго. Проектируются нетрадиционные электростанции в АО «Магаданэнерго», «Дальэнерго», «Ленэнерго», «Карелэнерго», «Сахалинэнерго».

Геотермальная энергия — один из важнейших нетрадиционных возобновляемых источников энергии, который уже сегодня становится конкурентоспособным на мировом рынке энергии. Мощность действующих ГеоТЭС в мире насчитывает около 6 тыс. МВт, более 2 тыс. строится и более 11 тыс. — намечается построить.

К настоящему времени в России разведано 56 месторождений термальных вод с дебитом, превышающим 300 тыс. куб. м/сутки. По 20 месторождениям ведется промышленная эксплуатация. Среди них можно отметить: Паратунское (Камчатка), Казьминское и Черкесское (Карачаево-Черкессия и Ставропольский край), Кизлярское и Махачкалинское (Дагестан), Мостовское и Вознесенское (Краснодарский край).

В России с 1967 г. работает Паужетская ГеоТЭС мощностью 11 МВт. Запасы парогидротерм в России, пригодные для использования в электроэнергетике, в основном сосредоточены на Камчатке и Курильских островах. Потенциальная их мощность оценивается в 1000 МВт, ее достаточно для удовлетворения полной потребности этих регионов в электроэнергии. Кроме того, отсепарированная на скважинах вода (конденсат) может направляться для нужд теплоснабжения.

В настоящее время на Камчатке ведется строительство Верхне-Мутновской геотермальной электростанции мощностью 12 МВт. Полную мощность электростанции предусматривается в дальнейшем довести до 200 МВт. В 1998 году Европейский банк реконструкции и развития выделил кредит на строительство 1-й очереди станции в размере 100 млн долларов США.

Утверждено ТЭО Океанской ГеоТЭС на о. Итуруп мощностью 30 МВт, но, несмотря на сложность энергоснабжения острова, строительство ее не ведется из-за отсутствия финансовых средств. По этой же причине прекращено в 1997 г. строительство ГеоТЭС мощностью 3 МВт на Каясулинском месторождении (Ставропольский край).

В 1998 г. АО НПО «Нетрадиционная электроэнергетика» совместно АО «Калужский турбинный завод» и АО «ЭНИН им. Г.М. Кржижановского» закончено изготовление опытно-промышленного образца турбины полного потока и начаты его испытания.

Важным вопросом, связанным с освоением геотермальных ресурсов, является освоение ресурсов низкопотенциальных вод, особенно в Центральных районах России, лишенных собственных топливно-энергетических ресурсов, а также использование водоносных горизонтов в качестве подземных теплоаккумуляторов.

За последние несколько лет ветроэнергетика стала одним из важных направлений в освоении возобновляемых источников энергии. В настоящее время в мире установлено ветроагрегатов общей мощностью около 6000 МВт, в США — 2500 МВт. Осуществляются широкие программы строительства ВЭС в Дании, Германии, Голландии и Японии. Главнейшей задачей в ветроэнергетике является создание надежного и эффективного энергооборудования для ВЭС.

В России ведется освоение головных ветроустановок (ВЭУ) единичной мощностью 250 и 1000 кВт. Первая из 22 ВЭУ Калмыцкой ВЭС мощностью по 1000 кВт — Радуга-1 — введена в работу в октябре 1995 г. Закончено изготовление и начат монтаж второй ВЭУ. В ноябре 1998 года итоги ос воения установок «Радуга-1» рассмотрены на НТС РАО «ЕЭС России». Предприятия-изготовители ВЭУ (АО «Тушенский машиностроительный завод» АО «Электросила», и АО «Атоммаш») в случае решения финансовых вопросов могут в 1999 году поставить на площадку оборудование еще для 1-2 установок 1-й очереди Калмыцкой ВЭС в составе 9 установок общей мощностью 9000 кВт.

На Воркутинской ВЭС с 1996 г. находятся в эксплуатации 6 ветроагрегатов мощностью по 200 и 250 кВт, однако монтаж остальных 4 установок, предусмотренных проектом ВЭС не ведется по тем же причинам. Из-за отсутствия инвестиционных средств не осуществляется строительство еще ряда ветроэлектростанций, по которым уже утверждено ТЭО. Это — Приморская ВЭС мощностью 30 МВт (Дальэнерго), Магаданская ВЭС мощностью 50 МВт и Морская ВЭС мощностью 30 МВт (Карелэнерго).

В 1998 году в России введен в эксплуатацию ветряк (ветрогенератор) мощностью 600 кВт фирмы Wind World и АО «Янтарьэнерго» (совместный российско-датский проект), решается вопрос о строительстве ВЭС мощностью 5 МВт.

В области солнечной энергетики все работы, проводившиеся в прежние годы в электроэнергетике, практически прекращены. Строительство Кисловодской СЭС мощностью 1,5 МВт, цель которой — отработать технологии и заменить 3 городские котельные, не соответствующие экологическим требованиям города-курорта, прекращено в 1994 году из-за отсутствия средств.

Важнейшим направлением нетрадиционной энергетики является использование энергии малых водных потоков для сооружения малых и микро-ГЭС. В настоящее время в России работает около 300 малых ГЭС суммарной мощностью около 1000 МВт, однако гидропотенциал малых вод ных потоков России практически не используется (используется лишь 1% потенциальной мощности). В отрасли имеется программа развития малой гидроэнергетики до 2010 года, согласно которой намечалось ввести 800 МВт мощности.

Сложившаяся 60-80-х годах тенденция в строительстве ГЭС ориентировалась на сооружение станций большой мощности. За этот период в стране количество малых ГЭС сократилось в десятки раз. Утраченное было производство гидроагрегатов малой мощности снова начинает возрождаться. К настоящему времени освоен выпуск большого числа гидроагрегатов на малые и средние напоры мощностью в десятки и сотни кВт. Однако на сегодня не освоено производство малых гидроагрегатов, рассчитанных на работу с малым (2-5 м) напором и большим потоком воды, что как нельзя лучше соответствовало бы условиям большинства рек Центральной России и других регионов.

В настоящее время проектирование и строительство малых ГЭС ведется на Северном Кавказе (ГЭС «Голубые озера», ГЭС-3 на канале Баксан-Малка, Усть-Джегутинская МГЭС, Гергебельская МГЭС), Урале (МГЭС в совхозе «Татауровский»), Сибири (МГЭС на реке Тоора-Хем), Дальнем Востоке (МГЭС на р. Быстрой, каскад Толмачевских МГЭС), Калининградской (Правдинская ГЭС) и Кировской областях


 

А также другие работы, которые могут Вас заинтересовать

42172. ИССЛЕДОВВАНИЕ ЦЕПИ ПЕРЕМЕННОГО ТОКА С ПОСЛЕДОВАТЕЛЬНЫМ СОЕДИНЕНИЕМ АКТИВНОГО И ИНДУКТИВНОГО СОПРОТИВЛЕНИЙ 299.5 KB
  Экспериментальное исследование характера изменения тока мощности и падений напряжений на участках последовательной цепи состоящей из активного и индуктивного сопротивлений а также построение круговой диаграммы. При прохождении синусоидального тока по цепи изображенной на рис.1б ток в любом сечении цепи один и тот же а общее напряжение согласно второму закону Кирхгофа равно геометрической сумме падений напряжений на...
42173. ИССЛЕДОВАНИЕ ЦЕПИ ПЕРЕМЕННОГО ТОКА С ПОСЛЕДОВАТЕЛЬНЫМ СОЕДИНЕНИЕМ АКТИВНОГО, ИНДУКТИВНОГО И ЕМКОСТНОГО СОПРОТИВЛЕНИЙ. РЕЗОНАНС НАПРЯЖЕНИЙ 271.5 KB
  РЕЗОНАНС НАПРЯЖЕНИЙ Цель работы: Исследование явления резонанса напряжений построение резонансных кривых и векторных диаграмм.1 следует иметь в виду что ток в любом элементе схемы один и тот же а питающее напряжение согласно второму закону Кирхгофа равно алгебраической сумме мгновенных значений напряжений на отдельных элементах схемы: 4.2 приведены векторные диаграммы напряжений и токов схемы рис. Ток совпадает по фазе с напряжением угол  = 0 cos = 1 и этот режим называется резонансом напряжений.
42174. ИССЛЕДОВАНИЕ ТЕХНОЛОГИИ ФОРМАТИРОВАНИЯ СЛОЖНЫХ ПО ФОРМАТУ ДОКУМЕНТОВ 654.5 KB
  Рукописные работы дипломные работы курсовые работы рефераты отчёты и пр. Основная часть рукописной работы Раздел 2 следует за титульным листом начинается со страницы № 2 обычно имеет оглавление. Заголовок 1 для глав работы Заголовок 2 для параграфов. Например для форматирования реквизитов Название организации Исполнитель Руководитель работ Название специальности Тема дипломной работы и пр.
42175. ИССЛЕДОВАНИЕ ЦЕПИ ПЕРЕМЕННОГО ТОКА С ПАРАЛЛЕЛЬНЫМ СОЕДИНЕНИЕМ АКТИВНОГО И ЕМКОСТНОГО СОПРОТИВЛЕНИЙ 203 KB
  Общие теоретические сведения В схеме рис.1 Векторная диаграмма этой схемы представлена на рис. Рис. Диаграмма представленная на рис.Ток совпадает по фазе с напряжением . Из точки О1 откладываем отрезок О1К = I2k /mI , по направлению вектора . Отрезок О1К является хордой круговой диаграммы . В масштабе mz откладываем по направлению отрезка О1К отрезок О1А = R2 /mz и из точки А под углом 900 к линии О1К проводим линию изменяющегося параметра AN’. Перпендикуляр, к линии изменяющегося параметра, опущенный из точки О1 совпадает по направлению с хордой.
42176. ИССЛЕДОВАНИЕ ЭЛЕКТРИЧЕСКОЙ ЦЕПИ ПЕРЕМЕННОГО ТОКА С ПАРАЛЛЕЛЬНЫМ СОЕДИНЕНИЕМ АКТИВНОГО, ИНДУКТИВНОГО И ЕМКОСТНОГО СОПРОТИВЛЕНИЙ. РЕЗОНАНС ТОКОВ 182.5 KB
  Общие теоретические сведения В схеме рис.1 Векторные диаграммы этой схемы при различных значениях емкости С представлена на рис.9 Рис. Если емкость C конденсатора подобрать так чтобы ток полностью компенсировал реактивную составляющую то общий ток будет совпадать по направлению с напряжением рис.
42177. Прилади і методи контролю метеорологічних умов на робочих місцях 99 KB
  Теоретичний вступ До показників які характеризують метеорологічні умови мікроклімат належать: температура відносна вологість швидкість руху повітря теплове випромінювання. Дійсну температуру повітря в робочій зоні визначають за формулою 1: де tч і t0 показники чорного та посрібленого термометрів 0С. Вимірювання температури повітря в приміщенні можна також проводити з допомогою сухого термометра аспіраційного психометра Ассмана. Вимірювання вологості повітря.
42178. Амбулаторно-поликлиническая помощь сельскому населению. Обзор. Состояние, проблемы и перспективы развития в Республике Беларусь 258 KB
  При этом в настоящее время существуют различны, иногда противоположные, мнения относительно действующей организационной модели сельского здравоохранения. Рядом автором она признается несовершеннолетней: недостаточная мощность организаций здравоохранения села рассматривается
42180. ИСПОЛЬЗОВАНИЕ ТЕХНОЛОГИИ «ПРИНЯТИЕ РЕШЕНИЙ» ПРИ РЕШЕНИИ ЗАДАЧ СРЕДСТВАМИ ТАБЛИЧНОГО ПРОЦЕССОРА 293 KB
  Найдите решения уравнения fx=0 с точность до 001 на отрезке [;b] используя опцию Подбор параметра. № варианта Функция fx Отрезок [;b] Шаг h fx = 3x52x4x36x2x4 [2;5] 05 fx = 3x5x36x2x4 [2;5] 05 fx = 2x56x4x3x2x4 [2;5] 05 fx = x39x224x15 [10;10] 05 fx = x23 x 2 [5;5] 05 fx = x36x29x6 [2;5] 05 fx = x36x29x2 [2;5] 05 fx = x39x224x2 [2;5] 05 fx = x33x26 [10;10] 05 fx = x312x245x51 [2;5] 05 fx= x26x8 [2;8] 05 fx =...