30756

Сущность зимнего бетонирования. Модуль поверхности конструкций, его влияние на выбор метода бетонирования. Понятие критической прочности

Доклад

Архитектура, проектирование и строительство

Продолжительность твердения и конечные свойства бетона в значительной степени зависят от температурного режима и состава бетона в том числе от вида цемента. Для твердения бетона наиболее благоприятной температурой является 1528гр. Кроме того вода образует вокруг крупного заполнителя обволакивающую ледяную пленку которая при оттаивании нарушает сцепление монолитность бетона. При раннем замораживании по тем же причинам резко снижается сцепление бетона с арматурой увеличивается пористость что влечёт за собой снижение прочности...

Русский

2013-08-24

17.93 KB

12 чел.

17. сущность зимнего бетонирования. Модуль поверхности конструкций, его влияние на выбор метода бетонирования. Понятие критической прочности.

Продолжительность твердения и конечные свойства бетона в значительной степени зависят от температурного режима и состава бетона (в том числе от вида цемента). Для твердения бетона наиболее благоприятной температурой является 15-28гр.С, при которой бетон на 28-е сутки практически достигает стабильной прочности. При снижении температуры процессы гидратации цемента замедляются. При отрицательных температурах не вступившая в реакцию с цементом вода переходит в лёд, и реакция гидратации прекращается.

Вода, замерзая, увеличивается в объёме примерно на 9%. В результате микроскопических образований льда в бетоне возникают силы давления, нарушающие образовавшиеся структурные связи, которые при твердении в нормальных температурных условиях уже не восстанавливаются. Кроме того, вода образует вокруг крупного заполнителя обволакивающую ледяную пленку, которая при оттаивании нарушает сцепление, монолитность бетона.

При раннем замораживании по тем же причинам резко снижается сцепление бетона с арматурой, увеличивается пористость, что влечёт за собой снижение прочности, морозостойкости и водонепроницаемости. При оттаивании замёрзшая свободная вода вновь превращается в жидкость, и процесс твердения бетона возобновляется. Однако из-за ранее нарушенной структуры конечная прочность такого бетона оказывается ниже прочности бетона, выдержанного в нормальных условиях, на 15-20 %. Особенно вредно попеременное замораживание и оттаивание бетона.

Зимние – условия при которых среднесуточная температура наружного воздуха снижается до +5 градусов и в течение суток есть падение ниже 0градусов.

Классификация методов зимнего бетонирования:

  1. Прогревные – основаны на введение тепла в бетон в процессе его твердения: электропрогрев (электрод, греющий провод, индукция, термоактивная опалубка), воздухопрогрев (инфракрасный, тепляки), паропрогрев.
  2. Беспрогревные – основаны на сохранении начального тепла, введённого в бетонную смесь при изготовлении, тепла выделяющегося в результате гидратации цемента (экзотермия) а также тепла введённого в бетонную смесь до укладки в опалубку: термос, предварительный электроразогрев бетонной смеси, использование хим.добавок (ускорители твердения, противоморозные добавки)

Минимальная прочность, при которой замораживание бетона уже не может нарушить его структуру и повлиять на его конечную прочность, называется критической. Для массивных конструкций Rкр>= 50% Rрасч., для тонкостенных Rкр>= 70% Rрасч. Для конструкций, поддвергающихся многократному замораживанию и оттаиванию или воздействию воды, а также для всех конструкций со специальными требованиями по морозостойкости и водонепроницаемости Rкритическая = 100% Rпроектной

Поддержание оптимальных условий достигается применением различных методов укладки и выдерживания бетона.

Термос – основан на использовании тепла, введённого в бетон до укладки его в опалубочную форму – в момент приготовления на РБУ (растворобетонный узел), и тепла, выделяемого цементом в процессе твердения бетона. Как правило, бетонная смесь укладывается в утеплённую опалубочную форму. Общий запас тепла в бетоне должен соответствовать его потерям при остывании конструкции до 0градусов.

Электродный прогрев -  основан на прекращении электрической энергии в тепловую при прохождении электрического тока через свежеуложенный бетон, который при помощи электродов включается в цепь электрического тока. Напряжение подаваемого тока 50-100 В, для чего применяют понизительные трансформаторы. В исключительных случаях для малоармированных конструкций допускается напряжение 120-220 В.

Предварительный электроразогрев – основан на кратковременном электроразогреве бетонной смеси от 0-5градусов до 70-90 градусов в специальных установках (бункер, кузов, опалубка) от сети 380 В. Укладка бетона в его опалубочной форме до начала схватывания. За счёт интенсивного тепловыделения цемента компенсируются теплопотери с поверхности бетона в окружающую среду, в результате чего обеспечивается постепенное остывание конструкций и благоприятное твердение бетона.

Введение противоморозных добавок – обеспечивает сохранение жидкой фазы в бетоне и твердение его при отрицательных температурах с достижением критической прочности в короткие сроки.

Модуль поверхности конструкции - отношение площади поверхности конструкции к ее объему. В зависимости от модуля ведётся выбор метода зимнего бетонирования.


 

А также другие работы, которые могут Вас заинтересовать

76857. Вены верхней конечности 179.85 KB
  В области надплечья и плеча они вливаются в глубокие вены. Вторые проходят вместе с артериями собирая кровь от костей мышц суставов и вливаясь в подключичные вены. Вены верхней конечности клапанные начинаясь от пальцев они формируют на кисти тыльные венозные сети и ладонные дуги с перфорантными ветвями на предплечье и плече поверхностные и глубокие вены с анастомозами между ними.
76858. Вены нижней конечности 182.02 KB
  Прободающие вены соединяют между собой многочисленные глубокие и поверхностные вены расположенные в разных плоскостях и уровнях. В области лодыжек перфорантные вены не имеют прямых связей с подкожной сетью. Поверхностные вены вливаются в глубокие в разных отделах ноги в подколенной ямке и под паховой связкой.
76859. Принципы строения лимфатической системы 182.88 KB
  Лимфатические капилляры отсутствуют в тех органах и тканях где кровеносные капилляры не имеют базальной мембраны: в головном и спинном мозге и их оболочках глазном яблоке внутреннем ухе эпителии кожи и слизистых оболочек в пульпе селезенки хрящах костном мозге и плаценте. Начиная с выносящих лимфатические сосуды располагают полулунными клапанами в виде складок эндотелия придающих сосуду снаружи четкообразный вид. Лимфатические сосуды подразделяются на висцеральные органные и париетальные поверхностные и глубокие. Внеорганные...
76860. Грудной проток 180.8 KB
  Образование протока явление многовариантное: слияние поясничных или кишечных или тех и других стволов правой и левой стороны; слияние только поясничных и кишечных стволов 25; образование стволами млечной цистерны cistern chyli в виде конусовидного ампулярного расширения 75; сетевидное начало в виде крупного петлистого сплетения из поясничных чревных брыжеечных стволов и выносящих сосудов. Проток возникает на уровне XII грудного II поясничного позвонков и располагается рядом с брюшной аортой. В грудном протоке от начала...
76861. Правый лимфатический проток 179.63 KB
  Он проходит рядом с подключичной веной имеет клапаны и сфинктер впадает либо в венозный угол и вены его образующие либо в правый лимфатический проток. Бронхомедиастинальный правый ствол truncus bronchomedistinlis собирается из выносящих лимфатических сосудов от средостенных трахеобронхиальных и бронхолегочных лимфатических узлов. Он имеет клапаны впадает в правый лимфатический проток или в правый яремный венозный угол или в вены его составляющие внутреннюю яремную подключичную плечеголовную.
76862. Лимфатический узел 181.03 KB
  Лимфатические синусы в паренхиме узла делятся на краевой подкапсульный sinus mrginlis seu subcpsulris корковые sinus corticles мозговые sinus medullres воротный sinus chilris. По приносящим сосудам лимфа поступает в краевой синус из него в корковые из них в мозговые синусы а потом в воротный откуда начинаются выносящие лимфатические сосуды. Лимфатические узлы располагаются группами с вариабельным числом узлов в каждой 420 66404 всего образуется до 150 региональных групп. У висцеральных узлов наблюдается несколько...
76863. Лимфатические сосуды и узлы головы и шеи 182.17 KB
  Они формируются из однослойной сети кожных лимфатических капилляров и посткапилляров и впадают в поверхностные лимфатические узлы расположенные на границе головы и шеи. Поверхностные лимфатические узлы головы. Они принимают лимфу от лобной теменной височной областей наружного уха слуховой трубы верхней губы и от околоушной железы а направляют её в поверхностные и глубокие шейные узлы.
76864. Лимфатические сосуды и узлы руки 180.47 KB
  По поверхностным сосудам оттекает лимфа от кожи подкожной клетчатки поверхностной фасции поверхностных мышц используя крупные и длинные лимфатические сосуды трех групп латеральной медиальной и средней. Латеральные лимфатические сосуды 510 начинаются от кожи IIII пальцев латеральной поверхности кисти предплечья плеча проходят вместе с цефалической веной и впадают в подмышечные лимфатические узлы латеральную группу. Медиальные лимфатические сосуды 515 начинаются на IVV пальцах медиальной поверхности кисти предплечья...
76865. Лимфатические сосуды и узлы ноги 179.36 KB
  sphen mgn а впадают в поверхностные паховые лимфатические узлы. Задние приносящие сосуды 35 начинаются от лимфатических сетей кожи подошвы пятки сопровождают малую подкожную вену и вливаются в подколенные лимфатические узлы. Глубокие приносящие сосуды начинаются из капиллярных лимфатических сетей мышц суставных капсул наружной оболочки эпиневрия периферических нервов надкостницы и проходят вместо с глубокими венами стопы голени бедра вливаясь в паховые лимфатические узлы.