30757

Классификация методов зимнего бетонирования. Выбор метода зимнего бетонирования

Доклад

Архитектура, проектирование и строительство

Беспрогревные – основаны на сохранении начального тепла введённого в бетонную смесь при изготовлении тепла выделяющегося в результате гидратации цемента экзотермия а также тепла введённого в бетонную смесь до укладки в опалубку: термос предварительный электроразогрев бетонной смеси использование хим. Термос – основан на использовании тепла введённого в бетон до укладки его в опалубочную форму – в момент приготовления на РБУ растворобетонный узел и тепла выделяемого цементом в процессе твердения бетона. Mn 3 – термос до 15...

Русский

2013-08-24

16.24 KB

14 чел.

18. Классификация методов зимнего бетонирования. Выбор метода зимнего бетонирования.

Зимние – условия при которых среднесуточная температура наружного воздуха снижается до +5 градусов и в течение суток есть падение ниже 0градусов.

Классификация методов зимнего бетонирования:

  1. Прогревные – основаны на введение тепла в бетон в процессе его твердения: электропрогрев (электрод, греющий провод, индукция, термоактивная опалубка), воздухопрогрев (инфракрасный, тепляки), паропрогрев.
  2. Беспрогревные – основаны на сохранении начального тепла, введённого в бетонную смесь при изготовлении, тепла выделяющегося в результате гидратации цемента (экзотермия) а также тепла введённого в бетонную смесь до укладки в опалубку: термос, предварительный электроразогрев бетонной смеси, использование хим.добавок (ускорители твердения, противоморозные добавки)

Поддержание оптимальных условий достигается применением различных методов укладки и выдерживания бетона.

Термос – основан на использовании тепла, введённого в бетон до укладки его в опалубочную форму – в момент приготовления на РБУ (растворобетонный узел), и тепла, выделяемого цементом в процессе твердения бетона. Как правило, бетонная смесь укладывается в утеплённую опалубочную форму. Общий запас тепла в бетоне должен соответствовать его потерям при остывании конструкции до 0градусов.

Электродный прогрев -  основан на прекращении электрической энергии в тепловую при прохождении электрического тока через свежеуложенный бетон, который при помощи электродов включается в цепь электрического тока. Напряжение подаваемого тока 50-100 В, для чего применяют понизительные трансформаторы. В исключительных случаях для малоармированных конструкций допускается напряжение 120-220 В.

Предварительный электроразогрев – основан на кратковременном электроразогреве бетонной смеси от 0-5градусов до 70-90 градусов в специальных установках (бункер, кузов, опалубка) от сети 380 В. Укладка бетона в его опалубочной форме до начала схватывания. За счёт интенсивного тепловыделения цемента компенсируются теплопотери с поверхности бетона в окружающую среду, в результате чего обеспечивается постепенное остывание конструкций и благоприятное твердение бетона.

Введение противоморозных добавок – обеспечивает сохранение жидкой фазы в бетоне и твердение его при отрицательных температурах с достижением критической прочности в короткие сроки.

Модуль поверхности конструкции - отношение площади поверхности конструкции к ее объему. В зависимости от модуля ведётся выбор метода зимнего бетонирования.

Mn<3 – термос (до -15 градусов), термос+ускорители твердения, термос+противоморозные добавки (до -25 градусов).

Mn=3-6 – термос, термос+добавки (до -15), обогрев вгреющей опалубке, предварительны разогрев (до -25), обогрев в греющей опалубке, периферийный электроразогрев (до - 40).

Mn=6-20 – термос+добавки, облогрев в греющей опалубке, предварительный разогрев, индукция (до -15), обогрев в греющей опалубке+добавки (до -40).


 

А также другие работы, которые могут Вас заинтересовать

41319. Изучение команд пересылки данных МК МС 68HC908GP32 1.63 MB
  Практически изучить команды пересылки данных МК МС 68HC908GP32 ПК ПО. Методические материалы и литература: Методические указания по выполнению практических работ; Иллюстративный материал: команды управления на языке SM для МП. При запуске МК процедура RЕSЕТ в РС автоматически загружается адрес первой команды выполняемой программы вектор начального запуска из двух...
41320. Изучение команд передачи управления 4.09 MB
  Практически изучить команды передачи управления . Методические материалы и литература: Методические указания по выполнению практических работ; Иллюстративный материал: команды операций над числами . При этом использовать описание работы лабораторный блок ПК иллюстрационный материал; В практической части отработать следующие подразделы: Рассмотреть команды передачи управления; Выполнить примеры и отразить их в отчёте; Проанализировать результаты выполненных примеров. Основные теоретические положения Способы...
41321. Изучение программной модели команд управления на языке SM для МП 1.1 MB
  Практически изучить программную модель команд управления на языке SM для МП. Методические материалы и литература: Методические указания по выполнению практических работ; Иллюстративный материал: команды управления на языке SM для МП. При этом исполнение текущей последовательности команд приостанавливается прерывается а вместо нее начинает выполняться другая последовательность соответствующая данному прерыванию.
41322. Изучение команд операций над числами 1.62 MB
  Основные теоретические положения Структура команд Любая команда ЭВМ обычно состоит из двух частей: операционной и адресной. Трехадресная команда легко расшифровывалась и была удобна в использовании но с ростом объемов ОЗУ ее длина становилась непомерно большой. Пример программы в командах процессора Перед вами короткая программа для процессора семейства 1п1е1 которая увеличивает число находящееся в регистре ах. Пример программы в командах процессора Несмотря на то что приведенная программа по длине явно больше чем...
41323. Изучение команд операций с битами 5.5 MB
  Каждая команда МК подгруппы РIС16F8Х представляет собой 14битовое слово разделенное на код операции ОРСОDЕ и поле для одного и более операндов которые могут участвовать или не участвовать в этой команде.1 Основные форматы команд МК Команды работы с битами Отличительной особенностью данной группы команд является то что они оперируют с однобитными операндами в качестве которых используются отдельные биты регистров МК. отрицание логическое НЕ логическая операция над одним операндом результатом которой является...
41324. Исследование состава и возможностей ИС РПО для семейства МК АVR 3.63 MB
  Основные теоретические положения Программная среда АVR Studio Фирма Аtmel разработчик микроконтроллеров АVR очень хорошо позаботилась о сопровождении своей продукции. Для написания программ их отладки трансляции и прошивки в память микроконтроллера фирма разработала специализированную среду разработчика под названием АVR Studio Программная среда АVR Studio это мощный современный про граммный продукт позволяющий производить все этапы разработки программ для любых микрокон троллеров серии АVR ....
41325. Работа с ИС РПО для семейства МК АVR 5.99 MB
  Если уже есть файл с текстом программы на Ассемблере и просто необходимо создать проект а затем подключить туда готовый программный файл снимите соответствующую галочку. Оно должно содержать имя файла куда будет записываться текст программы. При выборе этого элемента диалог создания проекта будет автоматически запускаться каждый раз при запуске программы VR Studio.ps; файл куда будет помещен текст программы на Ассемблере Prog1.
41326. Лабораторная работа Определение скорости полета пули методом баллистического маятника 461 KB
  Приборы: пули свинцовые 5 штук; пневматическое ружье; баллистический маятник; аналитические весы 0001 г; технические весы 1 г; линейка 1 см; секундомер 01 с. где d – расстояние от зеркальца до шкалы; n –отклонение “зайчика†по шкале; – расстояние от оси вращения до точки удара пули; l – расстояние от оси вращения до центра тяжести; h – высота поднятия цента тяжести;  угол отклонения; масса пули m.
41327. Основные закономерности движения простых колебательных систем. Изучение вынужденных колебаний 123 KB
  Найдем коэффициент возвращающей силы К и модуль Юнга Е. Теперь найдем добротность Q логарифмический декремент затухания  коэффициент затухания  коэффициент трения r частота резонанса Wрез: Итак подытожим результат: Е = 54 109  05 109 с1; К = 58  01 кгс1; W0 = Wрез= 622 с1; Q = 2074;  = 002;  = 02; r = 06.