30886

Электрические проявления сердечной деятельности

Доклад

Биология и генетика

Электрические проявления сердечной деятельности Деятельность сердца сопровождается рядом внешних проявлений: Механические 2. Векторкардиография метод регистрации направления электрической оси сердца в ходе сердечного цикла. В 1901 году Эйнтховен с помощью струнного гальванометра впервые зарегистрировал биотоки сердца. Кривая которую Эйнтховен назвал электрокардиограммой регистрировалась с поверхности сердца Тело человека является проводником 2го порядка ионная проводимость следовательно всякое биополе в т.

Русский

2013-08-24

45 KB

35 чел.

56. Электрические проявления сердечной деятельности…

Деятельность сердца сопровождается рядом внешних проявлений:

  1.  Механические,

2.  Звуковые,

3. Электрические - биотоки, возникающие за счет распространения возбуждения по сердечной мышце.

Методы регистрации электрических проявлений:

1. Векторкардиография - метод регистрации направления электрической оси сердца в ходе сердечного цикла.

2. Электрокардиография - метод регистрации процесса распространения возбуждения по сердцу.

В 1901 году Эйнтховен с помощью струнного гальванометра впервые зарегистрировал биотоки сердца. Кривая, которую Эйнтховен назвал электрокардиограммой, регистрировалась, с поверхности сердца, Тело человека является проводником 2-го порядка (ионная проводимость), следовательно, всякое биополе (в т.ч. и создаваемое сердцем) в таком проводнике можно зарегистрировать.

В 1904 году в России Александр Федорович Самойлов впервые зарегистрировал ЭКГ с поверхности тела человека. С этого момента ЭКГ, как метод регистрации внешних проявлений сердечной деятельности стал бурно развиваться.

В 1905 году на Всемирном Конгрессе кардиологов были утверждены основные принципы, стандартизирующие процесс регистрации и интерпретации получаемых с помощью ЭКГ данных (утверждены 3 стандартных отведения, обозначены зубцы, сегменты и интервалы, а также их нормальная продолжительность).

Виды отведений:

  1.  От конечностей:

а) биполярные (по Эйнтховену)- I (ПР-ЛР), II (ПР-ЛН), III (ЛР-ЛН) - стандартные отведения), формируют треугольник Эйнтховена, на стороны которого проецируется электрическая ось сердца.

         б) униполярные, усиленные (по Гольдбергеру - аVR, аVL и аVF), aV - "усиленный вольтаж (англ. аббревиатура)" с правой (Right), левой (Left) руки и левой ноги (Foot).  

  1.  Грудные:

а) биполярные (по Нэбу - D, A, I), формируют малый треугольник Эйнтховена непосредственно на грудной клетке (удобно регистрировать ЭКГ при физической нагрузке).

б) униполярные, усиленные (по Вильсону - V1-V6; могут регистрироваться дополнительно V7-V9), позволяют детально исследовать состояние стенок желудочков и установить локализацию патологического процесса.

3. Полостные (пищеводные, из крупных сосудов,  расположенных рядом с сердцем, из полостей сердца (катетеризация крупных сосудов  и полостей сердца)).

Элементы ЭКГ:

1. Зубцы - показывают отклонение разности потенциалов от электронейтрального уровня. М.б. положительные (P, R, T) и отрицательные (Q, S).

2. Сегменты - участки изолинии, заключенные между двумя соседними зубцами (P-Q, S-T, T-P).

3. Интервалы - как правило, включают в себя сегмент и прилегающие к нему зубцы (P-Q, S-T, Q-T, желудочковый комплекс QRS).

Последовательность распространения возбуждения по мышце сердца и возникновения элементов ЭКГ:

1. Возбуждение правого и левого предсердия (восходящая и нисходящая части зубца Р).

2. Атриовентрикулярная задержка (сегмент Р-Q).

3. Возбуждение межжелудочковой перегородки (зубец Q).

4. Возбуждение верхушки сердца и боковых стенок желудочков (зубец R).

5. Возбуждение основания желудочков (зубец S).

6. Полный охват возбуждением желудочков (сегмент S-T).

7. Процесс реполяризации желудочков (зубец Т).

8. Электрическая диастола сердца (сегмент Т-Р).

Оценка физиологических свойств сердечной мышцы по ЭКГ (оцениваются 3 из 4-х свойств):

автоматия, проводимость и возбудимость.

Оценка автоматии сердечной мышцы проводится по:  

  1.  Частоте сердечных сокращений.
  2.  Ритмичности сердечных сокращений.

3. Локализации очага возбуждения.

а) Частота сердечных сокращений (ЧСС) В норме, при ЧСС, равной 60-80 уд/мин, делают вывод о нормокардии (т.е. нормальном числе сердечных сокращений), снижение ЧСС менее 60 уд/мин называется брадикардия, увеличение ЧСС более 80 уд/мин - тахикардия.

б) Ритмичность: если продолжительность каждого из взятых циклов  отличается от среднего значения не более, чем на 10%, ритм считается правильным. При большем отклонении делают вывод о неправильном ритме или аритмии.

в). Локализация водителя ритма определяется

на основании ЧСС, а также

по последовательности и направлению зубцов на ЭКГ:

Синусовый ритм: локализация водителя ритма в синоатриальном узле характеризуется ЧСС, равной 60-80 уд/мин, а также правильным расположением и направлением зубцов ЭКГ.

Атриовентрикулярный ритм: при локализации водителя ритма в атриовентрикулярном узле ЧСС будет равна 40-59 уд/мин, зубец Р - отрицательный и может располагаться перед комплексом QRS, после него, или накладываться на него и не определяться (в зависимости от локализации водителя ритма в верхней, средней или нижней трети узла).

Желудочковый ритм: при локализации водителя ритма в центре автоматии 3-го порядка (пучок Гиса, ножки пучка Гиса), ЧСС - менее 40 уд/мин, при этом, вследствие необычного распространения возбуждения, комплекс QRS становится расширенным, неправильной формы. Предсердия при этом нарушении сокращаются в синусовом ритме, на ЭКГ выявляются нормальные зубцы Р, при этом они не связаны с QRS (т.н. предсердные Р-волны). Как правило, регистрируется при полной атриовентрикулярной блокаде.

Оценка проводимости сердечной мышцы проводится по

  1.  Положению электрической оси сердца.

2. Продолжительности элементов ЭКГ.

А) Заключение о положении электрической оси сердца.

Электрическая ось сердца, как правило, в момент формирования зубца R соответствует анатомической оси сердца, которая в грудной клетке направлена сверху вниз, сзади наперед и слева направо. Если ЭОС поместить в треугольник Эйнтховена, составленного из 3-х стандартных отведений и опустить на все три стороны треугольника перпендикуляры от начала и окончания ЭОС, то проекция ЭОС на сторонах треугольника будет отражать величину зубца R  в различных отведениях. Если наоборот, отложить на сторонах треугольника величины зубца R и опустить перпендикуляры до пересечения, то получится вектор ЭОС. 

1) в норме электрическая ось сердца при формировании зубца R совпадает с анатомической. На ЭКГ: R2>R3>R1 , это - нормограмма (т.е. нормальное положение электрической оси сердца у нормостеников).

  2) при отклонении электрической оси влево на ЭКГ определяется левограмма, для которой характерно соотношение:   R1>R2>R3.

  Левограмма свидетельствует или о горизонтальном анатомическом положении оси сердца (гипертрофия, конституциональные особенности - гиперстеник) или о нарушении /замедлении/ проведения возбуждения по левому желудочку.  

  3) при отклонении электрической оси вправо на ЭКГ определяется правограмма, для которой характерно соотношение:          R3>R2>R1.

  Правограмма свидетельствует или о вертикальном анатомическом положении оси сердца (у астеников) или о нарушении /замедлении/ проведения возбуждения по правому желудочку (гипертрофия, инфаркт правых отделов сердца).

  Б) Заключение о проводимости миокарда

Оценивается по длительности интервалов, сегментов и зубцов. Удлинение этих элементов характеризует замедление проведения возбуждения.

  1) длительность зубца Р в норме составляет не более 0,1 сек: восходящая часть - не более 0,05 сек, нисходящая часть - не более 0,05 сек.

  2) сегмент PQ измеряется от конца зубца Р до начала зубца Q. В норме он составляет не более 0,1 сек.

  3) интервал РQ измеряется от начала зубца Р до начала зубца Q. В норме он составляет 0,12-0,2 сек у взрослых, и 0,1-0,13 сек у детей.

  4) комплекс QRS измеряется от начала зубца Q до конца зубца S. В норме он составляет 0,06-0,1 сек.

  Заключение о проводимости сердечной мышцы по продолжительности элементов ЭКГ. 

Делают на основании анализа продолжительности зубцов и интервалов ЭКГ:

- нарушение проводимости предсердий характеризуется удлинением зубца Р: правого предсердия - восходящей части Р, а левого предсердия - нисходящей.

- атриовентрикулярная блокада или блокада пучка Гиса характеризуется удлинением сегмента РQ.

- блокада проведения возбуждения в желудочках (склероз, ишемия, инфаркт миокарда) характеризуется расширением комплекса QRS.

- неравномерный охват возбуждением миокарда желудочков (например, при инфаркте миокарда) характеризуется смещением интервала ST выше изолинии.

Оценка возбудимости сердечной мышцы.

Возбудимость оценивается по вольтажу зубцов в одном из стандартных отведений с максимально выраженной амплитудой. При стандартной калибровке 1 mV = 1 см величина зубцов в норме составляет:

Р - 0,5-2 мм;         

Q - 1-3 мм, в норме может отсутствовать;

R - 10-20 мм;                                                                        X 0,1 mV,

S - 1-3 мм, в норме может отсутствовать;

Т - 2-6 мм.

Холтеровское /суточное/ мониторирование ЭКГ.

-метод непрерывной амбулаторной регистрации ЭКГ с помощью портативных записывающих устройств и ускоренной интерпретации полученных данных.

Запись производится кардиорегистратором /2-х канальным/ с электронной памятью и блоком питания. Анализирующее устройство -компьютер, способный воспроизвести и показать любой участок суточной записи. Анализ показателей ведется за счет специального программного обеспечения.

Улучшает качество диагностики и прогноза.


 

А также другие работы, которые могут Вас заинтересовать

77376. О подсистеме истории в среде научной визуализации SharpEye 48.5 KB
  Обсуждаются пути реализации подсистемы редактируемой истории в возможности которой должны входить функции отката и повтора манипуляций проделанных пользователем сохранение и восстановлении подобранного вида сцены. Ключевые слова: научная визуализация система визуализации подключаемые внешние модули редактируемая истории откат повтор действий Введение В течение последних лет авторы разрабатывают среду ShrpEye конструктор систем научной визуализации [34]. Соответственно система должна предоставлять пользователю функционал...
77377. Функциональные возможности среды-конструктора систем научной визуализации SharpEye 38.5 KB
  Существующие системы научной визуализации можно разделить на три группы: универсальные системы (VIZIT, ParaView), системы, специализированные для некоторого класса задач (IVS3D, Venus, VolVis); и системы, специализированные для конкретной задачи. Недостатки первых двух групп – сложность в освоении, неизменность встроенных алгоритмов представления или высокая сложность их модификации.
77378. СИСТЕМА СОБЫТИЙНО-УПРАВЛЯЕМОЙ ТРАНСЛЯЦИИ LiME 34.5 KB
  Но архитектура мультиклеточных процессоров кроме повышения эффективности исполнения кода обладает рядом других важных и необходимых на практике возможностей таких как продолжение исполнения программы даже при выходе из строя части исполнительных устройств и группировка функциональные устройства более оптимальным для каждой конкретной задачи образом отключая при этом в целях экономии энергии устройства которые не используются и некоторые другие. В этой разработке самой первой из самых трудоёмких задач следует решить задачу по переводу...
77379. СОВРЕМЕННЫЕ МЕТОДЫ ВИЗУАЛИЗАЦИИ БОЛЬШИХ И СВЕРХБОЛЬШИХ ОБЪЁМНЫХ ДАННЫХ 30.5 KB
  Методы визуализации больших объёмных данных активно развиваются в том числе благодаря новым аппаратным средствам. В данной работе рассматриваются различные подходы к визуализации объёмных данных как с программной так и с аппаратной стороны актуальные на сегодняшний день. Также рассматривается специфика представления объёмных данных в памяти видеокарты и следующие из этого особенности и ограничения распределение задачи визуализации между GPU и CPU...
77380. Создание грид-сервисов для автоматизированной интеграции инженерных пакетов и интерактивных средств визуализации 38.5 KB
  Использование технологий Грид для обеспечения серьезных научных вычислений в интересах промышленности требует поддержки современных инженерных (Computer-Aided Engineering – CAE) пакетов. Инженерные пакеты, по сути, являются средами решения задач математической физики
77381. СРЕДА-КОНСТРУКТОР СИСТЕМ НАУЧНОЙ ВИЗУАЛИЗАЦИИ 33.5 KB
  В докладе сообщается о разрабатываемой авторами системе научной визуализации. В основе процесса научной визуализации лежит методика перевода абстрактных объектов в геометрические образы что дает возможность исследователю наблюдать результаты численного моделирования. Проблемой традиционных систем визуализации является жестко прописанный набор алгоритмов так что затруднена визуализация объектов образы которых строятся иными процедурами.
77384. Неопределённый интеграл 656.5 KB
  Понятие первообразной и неопределенного интеграла. Свойства неопределенного интеграла. Таблица основных неопределенных интегралов.