30894

Особенности гемодинамики в различных сосудистых регионах. Почечный кровоток

Доклад

Биология и генетика

Регуляция Миогенная регуляция ауторегуляция Даже небольшое увеличение объемной скорости портального кровотока приводит к повышению тонуса воротной вены и сопряженно констрикцию печеночной артерии. Оба этих механизма направлены на обеспечение постоянства кровотока и давления в синусоидах Гуморальная регуляция Дистантная регуляция Адреналин вызывают сокращение воротной вены в ней альфаадрено рецепторы и дилятации печеночной артерии в ней бетаадренорецепторы и усиливает печеночный кровоток. Норадреналин вызывает констрикцию воротной вены и...

Русский

2013-08-24

42.5 KB

2 чел.

65. Особенности гемодинамики в различных сосудистых регионах. Почечный кровоток…

Кровообращение в почках

  1.  В почках кровоток составляет 900-1200 мл/мин(20-25% от МОК)
  2.  Гидростатическое давление в капиллярах клубочков 50-70 мм.рт.ст., т.е. в 2 раза выше чем в других капиллярах

Регуляция

Гуморальная регуляция

Дистантные вазоконстрикторы: ангиотензин 11, катехоламины/в почечных сосудах-альфа-адренорецепторы/, вазопрессин.

Местно: почечные простагландины и почечные кинины вызывают дилятацию сосудов.  Избыток СО2 и аденозина- констрикцию.

Нервная регуляция.

Симпатическая нервная система через альфа-адренорецепторы- слабое констрикторное действие, через симпатические холинэргические волокна/есть такие/- слабую вазодилятацию.

Миогенная/ауторегуляция/ регуляция

Базальный  тонус  почечных сосудов высокий. Это позволяет обеспечить относительно стабильный кровоток при колебании системного давления от 70 до 180 мм.рт.ст.

Печеночное кровообращение

1.В печеной артерии  кровяное давление 100-120 мм.рт.ст. В воротной вене  давление около 10 мм.рт.ст., в синусоидах 5 мм.рт.ст, в печеночных венах 2-3 мм.рт.ст.

2.Величина кровотока 1,0-1,5 л/мин(20-30% от МОК) Через портальную систему 70-80% этого объема, по артериальной системе 20-30%. При максимальной дилятации через печень может проходить до 5,0 л/мин.

3.В норме постоянство кровотока поддерживается за счет реципрокных артерио-портальных взаимоотношений. Усиление кровотока через порталь ную систему при функциональной гиперемии ЖКТ уменьшает артериальную перфузию печени, и наоборот снижение портального кровотока усиливает артериальную перфузию.

4.Печень депо крови/500 мл/

5.Венозный ток осуществляется ритмично в зависимости от фаз дыхательного цикла. При вдохе усиливается приток крови по портальной вене из-за механического сдавления сосудистого ложа ЖКТ, отток крови по печеночным венам и нижней полой вене так же увеличивается за счет присасывающего действия грудной клетки.

Регуляция

Миогенная регуляция/ауторегуляция/

Даже небольшое увеличение объемной скорости портального кровотока приводит к повышению тонуса воротной вены и сопряженно констрикцию печеночной артерии. Оба этих механизма направлены на обеспечение постоянства кровотока и давления в синусоидах

Гуморальная регуляция

 Дистантная регуляция

Адреналин вызывают сокращение воротной вены/в ней альфа-адрено рецепторы/ и дилятации печеночной артерии/в ней бета-адренорецепторы/ и усиливает печеночный кровоток. Норадреналин вызывает констрикцию воротной вены и печеночной артерии, снижая печеночный кровоток.

Ангиотензин вызывает констрикцию портальной вены и печеночной артерии, уменьшая печеночный кровоток.

Ацетилхолин вызывает дилятацию печеночной артерии и увеличивает приток крови к печени, но вызывает сокращение печеночных венул, что припятствует оттоку крови из печени.

Глюкокортикоиды, инсулин, глюкогон,тироксин опосредовано усиливают печеночный кровоток, активирую метаболические процессы в гепатоцитах.

Местная регуляция

СО2, аденазин, гистамин, брадикинин, простагландины вызывают сужение портальных венул, уменьшая портальный кровоток, но они расширяют печеночные артериолы, усиливая приток артериальной крови в печень.

Нервная регуляция

Выражена слабо. Имеется небольшое ослабление печеночного кровотока при усилении симпатических влияний. Парасимпатических влияний на печеночный кровоток не выявлено.

Кровообращение скелетных мышц

1. В покое кровоток в скелетных мышцах составляет 750-900 мл/мин (15-20% от МОК/. Функционирует 20-30% капилляров

2. При физической работе кровоток в мышцах может увеличивается 30 в раз ,через мышцы проходит до 85-90% ОЦК, число функционирующих капилляров увеличивается в 2-3 раза

2. Мышцы, в отличие от сердца, могут работать в долг (во время работы - метаболизм за счет анаэробного обмена). После работы в мышцах в течение часа - очень интенсивное кровообращение (цель - вывести продукты анаэробного обмена). Это - "реактивная гиперемия".

3. Богатая иннервация, высокая чувствительность в значительному количеству гуморальных факторов.

4. При физической нагрузке работающие мышцы увеличивают приток к сердцу по венам.

5. При сокращении мышцы .ее кровоснабжение временно резко уменьшается/нарушается/.

Регуляция

Гуморальная регуляция

Местная регуляция

Наиболее сильными регуляторами являются  метаболиты, образующие при работе мышц, их количество зависит от интенсивности выполняемой работы.

Это СО2, молочная кислота, аденозин, так же повышение концентрации внеклеточного калия, гиперосмолярность, закисление среды. Они расширяют кровеносные сосуды в мышцах, увеличивают число функционирующих капилляров, усиливают кровоток в них.

Дистантная регуляция

Серотонин, брадикинин, гистамин, ацетилхолин оказывают сосудорасширяющее действие. Катехоламины-в зависимости от типа адренорецепторов- альфа-вазоконстрикция, бета-дилятация сосудов мышц.

        Нервная регуляция

Осуществляется симпатической нервной системой. В артериальной части –альфа- и бета- адренорецепторы, в венозной- только альфа-адренорецепторы.

В покое сосуды скелетных мышц находятся под тоническим констрикторным  влиянием симпатической нервной системы. В работающих мышцах это влияние уменьшается за счет центральных влияний /рефлекторно/ (функциональный симпатолиз). Через симпатические холинэргические волокна- слабая дилятация.

Особенности кровообращения в нижних конечностях

Артериальная система нижних конечностей

На артериальный кровоток в нижних конечностях оказывают влияние  гравитационные факторы, с их учетом давление в систолу на уровне голени должно было бы на 60-70 мм.рт.ст. превышать таковое в лучевой артерии, однако оно выше такового на 10-15%. Для противодействия влияния силам гравитации на АД в нижних конечностях сформировалось несколько компенсаторных механизмов.

1.Более толстая, с повышенными жестко-эластическими характеристиками, стенка артерий, наличие которой позволяет увеличивать скорость пульсовой волны  с3 до 5 м/сек. Это приводит к тому, что в дистальном конце сосуда в систолу давление повышается намного раньше, чем других сосудистых регионах, и увеличение кровотока как бы чрезмерно отстает от повышения давления. Это вызывает состояние, которое обозначается как фаза обратного тока, которая противодействует кровотоку и предохраняет артерии нижних конечностей от переполнения кровью.

2.Значительный сброс крови через артерио  - венозные шунты.

3.Опустошение вен при сокращении мышц нижних конечностей вызывает формирование мощного присасывающего действия и обеспечивает отток большего количества крови их артериальной системы. Чем в других сосудистых регионах.

Венозная система нижних конечностей

 Выделяют поверхностные, глубокие и коммуникантные вены.

Поверхностная венозная система. Состоит из систем двух подкожных вен(v. Safena magna) и (v. Safena parva)

Система глубоких вен. Глубокие вены сопровождают соответствующие артерии. Система глубоких вен включает вены стопы(тыльные и подошвенные дуги), вены голени-3 пары глубоких вен(передняя и задняя большеберцовые, малоберцовые), подколенная вена и глубокая вена бедра.

Коммуникантные вены- создают соединение между венами.

Часть из них перфорирует фасции и соединяет глубокие вены и поверхностные. Такие вены называют перфорантными.   Они представляют собой тонкостенные венозные сосуды различного диаметра от долей миллиметра до 2 миллиметров. Чаще такие вены имеют косой ход и достигают длины до 15 см. Большинсиво перфорантных вен имеют клапаны( от 2 до 5 и более клапонов). Клапаны открываются в стороны глубоких вен и этим обеспечивают продвижение крови в норме в одном направлении- из поверхностных вен в глубокие вены.

Различают прямые и непрямые перфоранты.

Прямые перфоранты – соединяют стволы крупных глубоких и поверхностных вен. Прямых перфорантов немного, они более крупные / сафено - подколенный, сафено – бедренный/

Непрямые перфоранты- соединяют более мелкие поверхностные и глубокие вены, которые в свою очередь впадают в магистральные вены/поверхностные и глубокие/.

Кровоток в нижних конечностях определяется факторами, определяющими венозный кровоток в целом/vis a tegro, vis a fronte/. Следует выделить фактор гидростатического давления, создаваемого силами гравитации, в вена нижних конечностей. В вертикальном положении давления в венах стопы возрастает под силой тяжести столба крови в 8-14 раз, гидростатическое давление столба крови/силы гравитации/ препятствует венозному кровотоку/возврату крови к сердцу/.

Против этого противодействия серьезно работает «мышечная помпа нижних конечностей». Сокращение скелетных мышц выдавливает кровь из глубоких вен в вышележащий участок сосуда/ обратно не пускают клапаны, хорошо развитые в глубоких венах и закрывающиеся при повышении давления/. Не может кровь в норме пойти из глубоких вен через перфоранты в поверхностные вены, так как перфоранты имеют клапаны, которые закрываются при повышении давления в глубоких венах и препятствуют  переходу крови из них в поверхностные вены.

При расслаблении скелетных мышц в глубоких венах понижается давление, это оказывает присасывающие влияние на нижележащие отделы венозного русла, что способствует поступлению из них новых порций крови, кроме того снижение давления в глубоких венах приводит к открытию клапанов в перфорантах и поступлению крови из поверхностных вен в глубокие.

Такие особенности присущи процессу венозного кровообращению в нижних конечностях в норме.

Нарушение клапанного аппарата в перфорантах является одной из главных причин возникновения варикозной болезни/певерхностные вены слабо приспособлены к резкому повышению давления.


 

А также другие работы, которые могут Вас заинтересовать

19084. Электронная микроскопия 465 KB
  Лекция 14. Электронная микроскопия ЭЛЕКТРОННЫЙ МИКРОСКОП прибор который позволяет получать сильно увеличенное изображение объектов используя для их освещения электроны. Электронный микроскоп ЭМ дает возможность видеть детали слишком мелкие чтобы их мог разреш...
19085. Нанотрубки и родственные структуры 309.5 KB
  Лекция 15. Нанотрубки и родственные структуры. Историческая справка Первооткрыватели Углеродные наноструктуры: фуллерены нанотрубки графен 1985 г. Открытие фуллеренов С60 Авторы: H.W.Kroto J.R.Heath S.C.O'Brien R.F.Curl R.E.Smalley Организации: Rice Quantum Inst. and Departments of Chemistry and Electrical...
19086. Применения наноструктур 2.59 MB
  Лекция 16. Применения наноструктур. Настоящая лекция посвящена рассмотрению конкретных примеров применении различных наноструктур. СВЕТОИЗЛУЧАЮЩИЕ НАНОТРУБКИ В ТЕЛИВИЗОРАХ И ДИСПЛЕЯХ. Углеродным нанотрубкам уже найдено немало применений в том числе в качестве эл...
19087. Общая постановка задачи дискретизации 155 KB
  Лекция № 1. Введение. Общая постановка задачи дискретизации. Цели и задачи курса: данный курс предназначен для освоения базовых понятий теории дискретных сигналов и основных принципов построения систем цифровой обработки сигналов. Курс знакомит с теоретическими о
19088. Выбор частоты дискретизации с помощью функций отсчетов 187.5 KB
  Лекция № 2. Выбор частоты дискретизации с помощью функций отсчетов. Теорема Котельникова: произвольный сигнал непрерывный спектр которого не содержит частот выше может быть полностью восстановлен если известны отсчетные значения этого сигнала взятые через равн
19089. Выбор шага дискретизации с использованием интерполирующих полиномов Лагранжа 181 KB
  Лекция № 3. Выбор шага дискретизации с использованием интерполирующих полиномов Лагранжа. При дискретизации реального сигнала описываемого непрерывной функцией имеющей ограниченную производную в качестве аппроксимирующей воспроизводящей функции может ис
19090. Выбор шага дискретизации с использованием экстраполирующих многочленов Тейлора 227 KB
  Лекция № 4. Выбор шага дискретизации с использованием экстраполирующих многочленов Тейлора. Экстраполирующий многочлен Тейлора описывающий исходную функцию определяется выражением: 4.1 где соответственно первая вторая и производные непрерывной ...
19091. Работа со cписками и Базы данных в Excel 336.71 KB
  Excel располагает набором функций, предназначенных для анализа списка. Одной из наиболее часто решаемых с помощью электронных таблиц является обработка списков. Вследствие этого Microsoft Excel имеет богатый набор средств, которые позволяют значительно у простить обработку таких данных. Ниже приведено несколько советов по работе со списками.
19092. Квантование сигналов по уровню 326.5 KB
  Лекция № 5. Квантование сигналов по уровню. Постановка задачи. Процесс преобразования сигнала с непрерывным множеством значений в сигнал с дискретными значениями называют квантованием по уровню. По существу операция квантования заключается в округлении значения...