30900

Клинико-физиологическая оценка внешнего дыхания. Функциональные показатели

Доклад

Биология и генетика

Минутный объем дыхания МОД объем воздуха который проходит через легкие за 1 минуту. Этот показатель можно определить двумя методами: с помощью спирографии ДО умножается на частоту дыхания и путем сбора воздуха в мешок Дугласа. МВЛ это максимальное количество воздуха которое может вдохнуть и выдохнуть пациент за 1 минуту ЧД – более 50 уд мин; N=1418. Форсированная жизненная емкость легких ФЖЕЛ количество воздуха которое пациент может выдохнуть за счет экспираторного маневра максимально быстро и полно .

Русский

2013-08-24

27.5 KB

2 чел.

71. Клинико-физиологическая   оценка   внешнего   дыхания. Функциональные показатели...

Физиологические показатели являются динамическими, т.к. характеризуют саму функцию внешнего дыхания во времени.

1. Минутный объем дыхания (МОД) - объем воздуха, который проходит через легкие за 1 минуту. Этот показатель можно определить двумя методами: с помощью спирографии (ДО умножается на частоту дыхания) и путем сбора воздуха в мешок Дугласа. В покое МОД составляет 4-6 литров в минуту. При физиологической нагрузке учащение и углубление дыхания приводят к возрастанию МОД до 30 л/мин. (4-11 л)

2. Максимальная вентиляция легких (МВЛ). МВЛ - это максимальное количество воздуха, которое может вдохнуть и выдохнуть пациент за 1 минуту (ЧД – более 50 уд/мин; N=14-18). В норме человек должен за минуту максимально провентилировать объем, равный ЖЕЛ * 40.    (МВЛ=ДЖЕЛ*25 ±10%)

3. Форсированная жизненная емкость легких (ФЖЕЛ) - количество воздуха, которое пациент может выдохнуть за счет экспираторного маневра /максимально быстро и полно/. Характеризуется объемом форсированного выдоха за 1 секунду /ОФВ1сек/ (Форсированный экспираторный поток за 1 сек -  дословный перевод термина с англ.).– Нормируется как ФЖЕЛ/ЖЕЛ, это индекс Тифно. В норме он составляет не менее 80% ЖЕЛ. Его снижение указывает на нарушение проходимости бронхиального дерева.

Основные показатели, регистрируемые при выполнении ФЖЕЛ

-Пиковая экспираторная объемная скорость /ПОС/-максимальный показатель объемной скорости потока (л/сек) при выполнении ФЖЕЛ. Характеризует силу дыхательных мышц и калибр «главных» бронхов.

-Максимальная объемная скорость потока на уровне 25%, 50%, 75% от ФЖЕЛ. /МОС25%, МОС50%, МОС75%/. Определяется мгновенная скорость в данный момент форсированного маневра. Показатель характеризует уровень обструкции, т.е. уровень нарушения проходимости  в бронхиальном дереве. МОС25% характеризует проходимость на уровне крупных бронхов, МОС50%- на уровне средних бронхов, МОС75%- на уровне мелких бронхов.

Для ПОС и МОС существуют должные величины, с которыми проводится сопоставление полученных результатов.

Vвд, Vвыд – максимальная скорость вдоха (выдоха) – определяется методом пневмотахометрии: Vвыд в норме 5-8 л/сек для мужчин, 4-6 л/сек для женщин; Vвд в норме не менее 90% от Vвыд.

РД  резервы дыхания – резервные возможности дыхательной системы, которые могут быть мобилизованы при переходе от спокойного к форсированному дыханию. РД=МВЛ-МОД. (N=60% от МВЛ)

Коэффициент альвеолярной вентиляции (КАВ) указывает на то, какая часть воздуха обменивается при одном дыхании:

КАВ=(ДО-ОМП) / ФОЕ     

В спокойном состоянии КАВ равен 1/7, то есть в альвеолах седьмая часть воздуха обменивается на атмосферный.

КИК – коэффициент использования кислорода – характеризует количество кислорода, потребляемого из вдыхаемого воздуха за одну минуту (ПО2) N=40 ±10%

КИК=ПО2 (мл) / МОД (л)

Показатели объемной скорости нельзя получить при спирографии, для этого используется пневмотахография

 Пневмотахография проводится с помощью приборов пневмотахометров, снабженных специальными датчиками - термоанемометрами, при прохождении струи выдыхаемого воздуха меняется электрическое сопротивление пропорционально объемной скорости воздушного потока, что позволяет по показаниям прибора вычислить основные параметры внешнего дыхания. Компьютерный анализ позволяет представить полученную информацию в виде кривой «поток-объем», которая отражает проходимость различных участков дыхательных путей.


 

А также другие работы, которые могут Вас заинтересовать

21915. Антенные решетки 122.5 KB
  Размещение излучателей в самой решетки может быть эквидистантное у которого шаг расстояние между излучателями величина постоянная и неэквидистантное у которого шаг меняется по определенному закону или случайным образом. По способу возбуждения питания излучателей различают решетки с последовательным и параллельным питанием. В больших антенных решетках применяют комбинации последовательнопараллельного питания излучателей особенно в случае разделения всей антенной решетки на подрешетки модули меньших размеров.
21916. Классификация антенных решеток 120.5 KB
  Для увеличения направленности действия на первых этапах развития антенной техники стали применять систему вибраторов – антенные решетки АР. Антенные решетки наиболее распространенный класс современных антенн элементами которых могут быть как слабонаправленные излучатели металлические и щелевые вибраторы волноводы диэлектрические стержни спирали и т. С помощью решетки удается поднять электрическую прочность антенны и увеличить уровень излучаемой принимаемой мощности путем размещения в каналах решетки независимых усилителей...
21917. Характеристики ФАР 299.5 KB
  Прямые численные методы суммирования полей элементов ФАР малопригодны для выявлений основных закономерностей. Поэтому в теории ФАР развиты приближенные но достаточно точные методы анализа и расчета позволяющие установить последовательно влияние дискретности размещения и управления полосы частот и сектора сканирования на основные характеристики. Сектор сканирования и число управляющих элементов ФАР Пространственный сектор сканирования ФАР может быть задан предельным отклонением луча по азимуту и месту или телесным углом обзора в стерадианах.
21918. Спиральные антенны в сотовых телефонах 576 KB
  Введение Спиральные антенны рис. Альтернатива им микрополосковые плоские антенны различных модификаций PIFA пока имеют ограниченное применение. Спиральные антенны со штырем Рисунок 2.
21919. Планарные антенные системы BlueTooth в сотовых телефонах 455.5 KB
  Рассмотрены конструкции и методы анализа планарной керамической антенны с учётом потерь в керамике. Для численного анализа антенны в корпусе использована программа HFSS. Изза маленькой длины волны на частоте 245 ГГц размер антенны ограничен несколькими см.
21920. РАСПРОСТРАНЕНИЕ РАДИОВОЛН И АНТЕННО-ФИДЕРНЫЕ УСТРОЙСТВА 46.5 KB
  РАСПРОСТРАНЕНИЕ РАДИОВОЛН И АНТЕННОФИДЕРНЫЕ УСТРОЙСТВА Конспект лекций по дисциплине Распространение радиоволн и антеннофидерные устройства для студентов очной формы обучения специальности 201200 Астрахань 2004 УДК 621. Распространение радиоволн и антеннофидерные устройства: Конспект лекций АГТУ. В учебном пособии изложены теоретические сведения по распространению радиоволн и антеннофидерным устройствам Распространение радиоволн и антеннофидерные устройства входит в цикл специальных дисциплин специальности 201200. Влияние окружающие...
21921. Основные характеристики и параметры антенн 292 KB
  РАСЧЕТ ПОЛЯ ИЗЛУЧЕНИЯ АНТЕНН. Применение принципа суперпозиции к расчету поля излучения антенн. Особенности расчета поля в дальней зоне антенны. Это свойство антенны графически изображается диаграммой направленности показывающей зависимость от направления напряжённости электрического поля излученной волны измеренной на большом и одинаковом расстоянии от антенны.
21922. Технологічний процес виробництва горілок, горілок особливих та лікеро-горілчаних виробів 238.5 KB
  Львівський Лікеро - Горілчаний Завод є перший виробник на Україні горілчаної продукції. Горілка порівняно недавній винахід людства. До появи горілки на Галичині прості галичани пили пиво, шляхта - вино, і лише наприкінці 18 ст. в Галичині зявляється мода на горілку
21923. ЭНЕРГЕТИЧЕСКИЕ УСТАНОВКИ КОРАБЛЕЙ 127 KB
  Назначение состав и особенности размещения энергетических установок на надводных кораблях. Устройство и живучесть надводного корабля. Это повлекло за собой усовершенствование конструкции парусного вооружения и способов управления парусами что позволило отказаться от весел сначала на крупных а затем и на остальных кораблях. Наряду с обеспечения движения корабля они стали снабжать оружие и технику различными видами энергии а также использоваться для улучшения обитаемости.