3120

Множества и операции над ними

Лабораторная работа

Информатика, кибернетика и программирование

Множества и операции над ними Написать программу, в которой для конечных упорядоченных множеств реализовать все основные операции с помощью алгоритма типа слияния. Допустима организация множеств в виде списка или в виде массива...

Русский

2012-10-24

133 KB

127 чел.

Множества и операции над ними

Написать программу, в которой для конечных упорядоченных множеств реализовать все основные операции (È , Ç , Í , \) с помощью алгоритма типа слияния (по материалам главы 1, п.1.2). Допустима организация множеств в виде списка или в виде массива.

Работа программы должна происходить следующим образом:

  1.  На вход подаются два упорядоченных множества A и B (вводятся с клавиатуры, элементы множеств – буквы латинского алфавита).
  2.  После ввода множеств выбирается требуемая операция (посредством текстового меню, вводом определенного символа в ответ на запрос – выбор по желанию автора). Операции: вхождение AÍ B, AÈ B, AÇ B, A\B (дополнительно: B\A, AD B, BÍ A).
  3.  Программа посредством алгоритма типа слияния определяет результат выбранной операции и выдает его на экран с необходимыми пояснениями. Одновременно с результатом на экране должны присутствовать и исходные множества.
  4.  Возврат на п.2 (выбор операции).
  5.  Завершение работы программы – из п.2 (например, по ESC).

Дополнительно: предусмотреть возможность возврата не только к выбору операции (п.2), но и к вводу новых множеств (п.1). Выход в таком случае должен быть возможен из любого пункта (1 или 2).

Замечание: Исходные множества не должны содержать повторяющихся элементов (при обработке входных данных такие элементы следует удалять). Если исходные множества не упорядочены, нужно отсортировать их по возрастанию. Только после такой обработки над множествами возможно выполнять требуемые операции.


Решение.

Множества будем хранить как массив с нумерацией элементов, начинающейся с единицы.

Объединение множеств.

Обозначим через i номер текущего рассматриваемого элемента в множестве A, через j – номер текущего рассматриваемого элемента множества B. Будем получать множество U, представляющее собой объединение множеств A и B. Через k обозначим мощность множества U. Также k будет и номером последнего добавленного элемента в U.

Алгоритм решения.

  1.  Положить i = j =1, k = 0.
  2.  Если ещё не просмотрены все элементы множеств A, B выполнить:
    1.  Если в A ещё есть элементы, и в B есть элементы и A[i] = B[j], то
      1.  Добавить A[i] в U, то есть k := k + 1 и U[k] := A[i]
      2.  Перейти к следующим элементам в A и B, то есть i := i + 1 и j := j + 1
    2.  Если в B уже все элементы были просмотрены или же A[i] < B[j] (при условии, что в A не все элементы были просмотрены) выполнить:
      1.  Добавить A[i] в U, то есть k := k + 1 и U[k] := A[i]
      2.  Перейти к следующему элементу множества A, то есть i := i + 1
    3.  Во всех остальных случаях (то есть когда в A уже все элементы просмотрены или же если A[i] > B[j]) выполнить:
      1.  Добавить B[j] в U, то есть k := k + 1 и U[k] := B[j];
      2.  Перейти к следующему элементу множества B, то есть j := j + 1
    4.  Перейти к пункту 2.

Как видно, на каждом шаге мы добавляем в U минимальный элемент из A[i] и B[j] и переходим к рассмотрению следующего элемента.

Пересечение множеств.

Обозначим через i номер текущего рассматриваемого элемента в множестве A, через j – номер текущего рассматриваемого элемента множества B. Будем получать множество P, представляющее собой пересечение множеств A и B. Через k обозначим мощность множества P. Также k будет и номером последнего добавленного элемента в P.

Алгоритм решения.

  1.  Положить i = j = 1 и k = 0.
  2.  Если в A и B (одновременно) есть ещё непросмотренные элементы, выполнить:
    1.  Если A[i] = B[j], то выполнить:
      1.  Добавить A[i] в U, то есть k := k + 1 и U[k] := A[i]
      2.  Перейти к следующим элементам множеств A, B, то есть i := i + 1 и j := j + 1
    2.  Если A[i] < B[j], то перейти к следующему элементу множества A, то есть i := i +1
    3.  В остальных случаях (то есть когда A[i] > B[j]) перейти к следующему элементу множества B, то есть j := j + 1
    4.  Перейти к пункту 2.

Разность множеств.

Обозначим через i номер текущего рассматриваемого элемента в множестве A, через j – номер текущего рассматриваемого элемента множества B. Будем получать множество D, представляющее собой множество A без элементов множества B. Через k обозначим мощность множества D. Также k будет и номером последнего добавленного элемента в D.

Алгоритм решения.

  1.  Положить i = j = 1 и k = 0.
  2.  Если в A и B (одновременно) ещё есть непросмотренные элементы, выполнить:
    1.  Если A[i] = B[j], то переходим к следующим элементам множеств A и B, так как равные элементы вычлись и в D ничего добавлять не надо. Выполняем i := i + 1 и j := j + 1
    2.  Если A[i] < B[j], то, в силу упорядоченности, в множестве B уже точно нет элемента, равного A[i], поэтому ничто не вычитается. Добавляем A[i] в D, то есть k := k + 1 и D[k] := A[i], и переходим к следующему элементу в A, то есть i := i + 1
    3.  Если A[i] > B[j], то берём следующий элемент из B (так как из A исключить элемент B[i] ввиду того, что в A нет такого элемента), то есть j := j + 1
    4.  Переходим к пункту 2.

Проверка вхождения A в B.

Обозначим через i номер текущего рассматриваемого элемента в множестве A, через j – номер текущего рассматриваемого элемента множества B.

Алгоритм решения.

  1.  Если мощность A больше мощности B, то, очевидно, что A в B не входит. Завершить работу.
  2.  Положить i = j = 1.
  3.  Если в A и B (одновременно) есть ещё непросмотренные элементы, выполнить:
    1.  Если A[i] > B[i], то перейти к следующему элементу в B, то есть j := j + 1
    2.  Если A[i] = B[j], то перейти к следующим элементам в A и B, то есть i := i + 1 и j := j + 1
    3.  Перейти к пункту 3.
  4.  Если i - 1 равно N (то есть мы перебрали все элементы из A, а это в нашем алгоритме возможно лишь тогда, когда для каждого элемента из A имеется такой же элемент в B), то A входит в B, иначе не входит.


Исходный код на
Borland Pascal 7.

program lab1;

uses

 Crt;

const

 Nmax = 50;  { Макс. кол-во элементов множества }

type

 T = Char; { Тип элементов множества }

 TSet = Array[1..Nmax] of T; { Само множество }

{ Сортировка выбором по неубыванию }

procedure Sort(var A: TSet; const N: Integer);

var

 i, j, k: Integer;

 tmp: T;

begin

 for i := 1 to N - 1 do begin

   k := i;

   for j := i + 1 to N do

     if A[j] < A[k] then k := j;

   tmp := A[i];

   A[i] := A[k];

   A[k] := tmp;

 end;

end;

{ Ввод множества }

procedure Set_Input(var A: TSet; var N: Integer);

var

 i, j: Integer;

 tmp: T;

 F: Boolean;

begin

 Reset(Input);

 N := 0;

 while not SeekEoLn do begin

   Inc(N);

   Read(A[N]);

 end;

 Sort(A, N);

 F := False;

 i := 1;

 while i < N do begin

   if A[i] = A[i + 1] then begin

     F := True;

     Dec(N);

     for j := i + 1 to N do

       A[j] := A[j + 1];

   end

   else

     Inc(i);

 end;

 if F then WriteLn('Повторяющиеся элементы удалены.');

end;

{ Печать множества }

procedure Print(const A: TSet; const N: Integer);

var

 i: Integer;

begin

 for i := 1 to N do

   Write(A[i], ' ');

 if N = 0 then Write('Пустое множество.');

 WriteLn;

end;

{ Печать множеств A, B }

procedure Print_Sets(const A, B: TSet; const N, M: Integer);

var

 i: Integer;

begin

 WriteLn;

 Write('Множество A:  ');

 for i := 1 to N do

   Write(A[i], ' ');

 WriteLn;

 Write('Множество B:  ');

 for i := 1 to M do

   Write(B[i], ' ');

 WriteLn;

end;

{ Объединение множеств A и B методом слияния }

procedure Union(var U: TSet; var k: Integer; const A, B: TSet; const N, M: Integer);

var

 i, j: Integer;

begin

 i := 1;

 j := 1;

 k := 0;

 while (i <= N) or (j <= M) do

   if (j <= M) and (i <= N) and (A[i] = B[j]) then begin

     Inc(k);

     U[k] := A[i];

     Inc(i);

     Inc(j);

   end

   else if (j > M) or (i <= N) and (A[i] < B[j]) then begin

     Inc(k);

     U[k] := A[i];

     Inc(i);

   end

   else begin

     Inc(k);

     U[k] := B[j];

     Inc(j);

   end;

end;

{ Пересечение множеств A, B методом слияния }

procedure Product(var P: TSet; var k: Integer; const A, B: TSet; const N, M: Integer);

var

 i, j, W: Integer;

begin

 i := 1;

 j := 1;

 k := 0;

 while (i <= N) and (j <= M) do

   if (A[i] = B[j]) then begin

     Inc(k);

     P[k] := A[i];

     Inc(i);

     Inc(j);

   end

   else if A[i] < B[j] then

     Inc(i)

   else

     Inc(j);

end;

{ Разность множеств A, B методом слияния }

procedure Diff(var D: TSet; var k: Integer; const A, B: TSet; const N, M: Integer);

var

 i, j: Integer;

begin

 i := 1;

 j := 1;

 k := 0;

 while (i <= N) and (j <= M) do

   if A[i] = B[j] then begin

     Inc(i);

     Inc(j);

   end

   else if A[i] < B[j] then begin

     Inc(k);

     D[k] := A[i];

     Inc(i);

   end

   else if A[i] > B[j] then

     Inc(j);

 while (i <= N) and (j > M) do begin

   Inc(k);

   D[k] := A[i];

   Inc(i);

 end;

end;

{ Проверка на вхождение A в B }

function Incl(const A, B: TSet; const N, M: Integer): Boolean;

var

 i, j: Integer;

begin

 Incl := False;

 if N > M then Exit;

 i := 1;

 j := 1;

 while (i <= N) and (j <= M) and (A[i] >= B[j]) do

   if A[i] > B[j] then

     Inc(j)

   else if A[i] = B[j] then begin

     Inc(i);

     Inc(j);

   end;

 Incl := i - 1 = N;

end;

{ Вывод на экран клавиш управления }

procedure Keys;

begin

 ClrScr;

 WriteLn('Выберите действие:');

 WriteLn;

 WriteLn('1 - ввод множества A');

 WriteLn('2 - ввод множества B');

 WriteLn('3 - проверка вхождения A в B');

 WriteLn('4 - вывести объеденение множеств A и B');

 WriteLn('5 - вывести пересечение множеств A и B');

 WriteLn('6 - вывести разность A \ B');

 WriteLn('0 - очистка экрана');

 WriteLn('Esc - выход');

 WriteLn;

end;

var

 N, M, K: Integer;

 A, B, C: TSet;

 v: Char;

begin

 Keys;

 N := 0;

 M := 0;

 repeat

   v := ReadKey; { Получаем номер действия }

   if v in ['3'..'6'] then Print_Sets(A, B, N, M);

   case v of

     '1':

       begin

         WriteLn('Введите множество A:');

         Set_Input(A, N);

         WriteLn('Готово.');

         WriteLn;

       end;

     '2':

       begin

         WriteLn('Введите множество B:');

         Set_Input(B, M);

         WriteLn('Готово.');

         WriteLn;

       end;

     '3': if Incl(A, B, N, M) then WriteLn('A входит в B') else WriteLn('A не входит в B');

     '4':

       begin

         WriteLn('Объединение A и B:');

         Union(C, K, A, B, N, M);

         Print(C, K);

       end;

     '5':

       begin

         WriteLn('Пересечение A и B:');

         Product(C, K, A, B, N, M);

         Print(C, K);

       end;

     '6':

       begin

         WriteLn('Разность A \ B:');

         Diff(C, K, A, B, N, M);

         Print(C, K);

       end;

     '0': Keys;

   end;

 until v = #27;

end.
Результат работы программы.


 

А также другие работы, которые могут Вас заинтересовать

19773. Строительные конструкции 6.62 MB
  71. Конструктивные схемы прокладки линейной части трубопроводов Основной составляющей магистрального трубопровода является линейная часть непрерывная нить сваренная из отдельных труб или секций и уложенная вдоль трассы тем или иным способом. В настоящее время су
19774. Сооружение и ремонт резервуарных парков 3.72 MB
  81. Стальные вертикальные цилиндрические резервуары с плавающими крышами. Для сокращения потерь нефтепродуктов от испарения поверхность жидкости в резервуаре закрывают круглой мембраной понтоном или плавающей крышей рис.1.. Основное отличие данного типа резервуар...
19775. Технология металлов 109.5 KB
  91. Что называется скрапом в металлургической промышленности. Скрап Вторичный металл металлическое сырьё в виде лома и отходов производства предназначаемое для переплавки с целью получения годного металла. Процесс производства стали основан на методах плавления ч
19776. Защита трубопроводов от коррозии 471 KB
  101. Основной принцип катодной защиты. Катодная защита рис. 1 защита подземного металлического трубопровода при наложении электрического поля от внешнего источника тока создающего катодную поляризацию на трубопроводе. При этом коррозионному разрушению подвергаетс
19777. Сварка трубопроводов и конструкций 342 KB
  111. Источники питания сварочным током применяемые в трассовых условиях их назначение и устройство. Для обеспечения сварочного процесса в трассовых условиях или на строительной площадке установки обычно комплектуют источником питания сварочной дуги сварочным агре
19778. Диагностика и контроль качества 1.17 MB
  121. Методы диагностики магистральных трубопроводов. Методы диагностирования позволяют обнаружить дефекты различного происхождения определять их характер и размеры а следовательно появляется возможность классифицировать их по степени опасности и устанавливать оч...
19779. Обустройство промыслов 6.68 MB
  131. Классификация нефтяных и газовых месторождений. Под залежью нефти и горючих газов понимается естественное скопление жидких и газообразных углеводородов приуроченное к одному или нескольким пластамколлекторам с единой гидродинамической системой. По начальном
19780. IDE Borland C++ Builder. Структура проекту 16.82 KB
  Borland C Интегри́рованная среда́ разрабо́тки ИСР англ. IDE система программных средств используемая программистами для разработки программного обеспечения ПО на языках Си и C для DOS Windows и Windows NT. Потомок Turbo C. Его отладчик Turbo Debugger был написан для защищённого режима DOS....
19781. Ієрархія класів. Базові класи VCL 16.43 KB
  Иерархия. Управлять большим количеством разрозненных классов довольно сложно. С этой проблемой можно справиться путем упорядочивания и ранжирования классов то есть объединяя общие для нескольких классов свойства в одном классе и используя его в качестве базового. Эту в...