3120

Множества и операции над ними

Лабораторная работа

Информатика, кибернетика и программирование

Множества и операции над ними Написать программу, в которой для конечных упорядоченных множеств реализовать все основные операции с помощью алгоритма типа слияния. Допустима организация множеств в виде списка или в виде массива...

Русский

2012-10-24

133 KB

98 чел.

Множества и операции над ними

Написать программу, в которой для конечных упорядоченных множеств реализовать все основные операции (È , Ç , Í , \) с помощью алгоритма типа слияния (по материалам главы 1, п.1.2). Допустима организация множеств в виде списка или в виде массива.

Работа программы должна происходить следующим образом:

  1.  На вход подаются два упорядоченных множества A и B (вводятся с клавиатуры, элементы множеств – буквы латинского алфавита).
  2.  После ввода множеств выбирается требуемая операция (посредством текстового меню, вводом определенного символа в ответ на запрос – выбор по желанию автора). Операции: вхождение AÍ B, AÈ B, AÇ B, A\B (дополнительно: B\A, AD B, BÍ A).
  3.  Программа посредством алгоритма типа слияния определяет результат выбранной операции и выдает его на экран с необходимыми пояснениями. Одновременно с результатом на экране должны присутствовать и исходные множества.
  4.  Возврат на п.2 (выбор операции).
  5.  Завершение работы программы – из п.2 (например, по ESC).

Дополнительно: предусмотреть возможность возврата не только к выбору операции (п.2), но и к вводу новых множеств (п.1). Выход в таком случае должен быть возможен из любого пункта (1 или 2).

Замечание: Исходные множества не должны содержать повторяющихся элементов (при обработке входных данных такие элементы следует удалять). Если исходные множества не упорядочены, нужно отсортировать их по возрастанию. Только после такой обработки над множествами возможно выполнять требуемые операции.


Решение.

Множества будем хранить как массив с нумерацией элементов, начинающейся с единицы.

Объединение множеств.

Обозначим через i номер текущего рассматриваемого элемента в множестве A, через j – номер текущего рассматриваемого элемента множества B. Будем получать множество U, представляющее собой объединение множеств A и B. Через k обозначим мощность множества U. Также k будет и номером последнего добавленного элемента в U.

Алгоритм решения.

  1.  Положить i = j =1, k = 0.
  2.  Если ещё не просмотрены все элементы множеств A, B выполнить:
    1.  Если в A ещё есть элементы, и в B есть элементы и A[i] = B[j], то
      1.  Добавить A[i] в U, то есть k := k + 1 и U[k] := A[i]
      2.  Перейти к следующим элементам в A и B, то есть i := i + 1 и j := j + 1
    2.  Если в B уже все элементы были просмотрены или же A[i] < B[j] (при условии, что в A не все элементы были просмотрены) выполнить:
      1.  Добавить A[i] в U, то есть k := k + 1 и U[k] := A[i]
      2.  Перейти к следующему элементу множества A, то есть i := i + 1
    3.  Во всех остальных случаях (то есть когда в A уже все элементы просмотрены или же если A[i] > B[j]) выполнить:
      1.  Добавить B[j] в U, то есть k := k + 1 и U[k] := B[j];
      2.  Перейти к следующему элементу множества B, то есть j := j + 1
    4.  Перейти к пункту 2.

Как видно, на каждом шаге мы добавляем в U минимальный элемент из A[i] и B[j] и переходим к рассмотрению следующего элемента.

Пересечение множеств.

Обозначим через i номер текущего рассматриваемого элемента в множестве A, через j – номер текущего рассматриваемого элемента множества B. Будем получать множество P, представляющее собой пересечение множеств A и B. Через k обозначим мощность множества P. Также k будет и номером последнего добавленного элемента в P.

Алгоритм решения.

  1.  Положить i = j = 1 и k = 0.
  2.  Если в A и B (одновременно) есть ещё непросмотренные элементы, выполнить:
    1.  Если A[i] = B[j], то выполнить:
      1.  Добавить A[i] в U, то есть k := k + 1 и U[k] := A[i]
      2.  Перейти к следующим элементам множеств A, B, то есть i := i + 1 и j := j + 1
    2.  Если A[i] < B[j], то перейти к следующему элементу множества A, то есть i := i +1
    3.  В остальных случаях (то есть когда A[i] > B[j]) перейти к следующему элементу множества B, то есть j := j + 1
    4.  Перейти к пункту 2.

Разность множеств.

Обозначим через i номер текущего рассматриваемого элемента в множестве A, через j – номер текущего рассматриваемого элемента множества B. Будем получать множество D, представляющее собой множество A без элементов множества B. Через k обозначим мощность множества D. Также k будет и номером последнего добавленного элемента в D.

Алгоритм решения.

  1.  Положить i = j = 1 и k = 0.
  2.  Если в A и B (одновременно) ещё есть непросмотренные элементы, выполнить:
    1.  Если A[i] = B[j], то переходим к следующим элементам множеств A и B, так как равные элементы вычлись и в D ничего добавлять не надо. Выполняем i := i + 1 и j := j + 1
    2.  Если A[i] < B[j], то, в силу упорядоченности, в множестве B уже точно нет элемента, равного A[i], поэтому ничто не вычитается. Добавляем A[i] в D, то есть k := k + 1 и D[k] := A[i], и переходим к следующему элементу в A, то есть i := i + 1
    3.  Если A[i] > B[j], то берём следующий элемент из B (так как из A исключить элемент B[i] ввиду того, что в A нет такого элемента), то есть j := j + 1
    4.  Переходим к пункту 2.

Проверка вхождения A в B.

Обозначим через i номер текущего рассматриваемого элемента в множестве A, через j – номер текущего рассматриваемого элемента множества B.

Алгоритм решения.

  1.  Если мощность A больше мощности B, то, очевидно, что A в B не входит. Завершить работу.
  2.  Положить i = j = 1.
  3.  Если в A и B (одновременно) есть ещё непросмотренные элементы, выполнить:
    1.  Если A[i] > B[i], то перейти к следующему элементу в B, то есть j := j + 1
    2.  Если A[i] = B[j], то перейти к следующим элементам в A и B, то есть i := i + 1 и j := j + 1
    3.  Перейти к пункту 3.
  4.  Если i - 1 равно N (то есть мы перебрали все элементы из A, а это в нашем алгоритме возможно лишь тогда, когда для каждого элемента из A имеется такой же элемент в B), то A входит в B, иначе не входит.


Исходный код на
Borland Pascal 7.

program lab1;

uses

 Crt;

const

 Nmax = 50;  { Макс. кол-во элементов множества }

type

 T = Char; { Тип элементов множества }

 TSet = Array[1..Nmax] of T; { Само множество }

{ Сортировка выбором по неубыванию }

procedure Sort(var A: TSet; const N: Integer);

var

 i, j, k: Integer;

 tmp: T;

begin

 for i := 1 to N - 1 do begin

   k := i;

   for j := i + 1 to N do

     if A[j] < A[k] then k := j;

   tmp := A[i];

   A[i] := A[k];

   A[k] := tmp;

 end;

end;

{ Ввод множества }

procedure Set_Input(var A: TSet; var N: Integer);

var

 i, j: Integer;

 tmp: T;

 F: Boolean;

begin

 Reset(Input);

 N := 0;

 while not SeekEoLn do begin

   Inc(N);

   Read(A[N]);

 end;

 Sort(A, N);

 F := False;

 i := 1;

 while i < N do begin

   if A[i] = A[i + 1] then begin

     F := True;

     Dec(N);

     for j := i + 1 to N do

       A[j] := A[j + 1];

   end

   else

     Inc(i);

 end;

 if F then WriteLn('Повторяющиеся элементы удалены.');

end;

{ Печать множества }

procedure Print(const A: TSet; const N: Integer);

var

 i: Integer;

begin

 for i := 1 to N do

   Write(A[i], ' ');

 if N = 0 then Write('Пустое множество.');

 WriteLn;

end;

{ Печать множеств A, B }

procedure Print_Sets(const A, B: TSet; const N, M: Integer);

var

 i: Integer;

begin

 WriteLn;

 Write('Множество A:  ');

 for i := 1 to N do

   Write(A[i], ' ');

 WriteLn;

 Write('Множество B:  ');

 for i := 1 to M do

   Write(B[i], ' ');

 WriteLn;

end;

{ Объединение множеств A и B методом слияния }

procedure Union(var U: TSet; var k: Integer; const A, B: TSet; const N, M: Integer);

var

 i, j: Integer;

begin

 i := 1;

 j := 1;

 k := 0;

 while (i <= N) or (j <= M) do

   if (j <= M) and (i <= N) and (A[i] = B[j]) then begin

     Inc(k);

     U[k] := A[i];

     Inc(i);

     Inc(j);

   end

   else if (j > M) or (i <= N) and (A[i] < B[j]) then begin

     Inc(k);

     U[k] := A[i];

     Inc(i);

   end

   else begin

     Inc(k);

     U[k] := B[j];

     Inc(j);

   end;

end;

{ Пересечение множеств A, B методом слияния }

procedure Product(var P: TSet; var k: Integer; const A, B: TSet; const N, M: Integer);

var

 i, j, W: Integer;

begin

 i := 1;

 j := 1;

 k := 0;

 while (i <= N) and (j <= M) do

   if (A[i] = B[j]) then begin

     Inc(k);

     P[k] := A[i];

     Inc(i);

     Inc(j);

   end

   else if A[i] < B[j] then

     Inc(i)

   else

     Inc(j);

end;

{ Разность множеств A, B методом слияния }

procedure Diff(var D: TSet; var k: Integer; const A, B: TSet; const N, M: Integer);

var

 i, j: Integer;

begin

 i := 1;

 j := 1;

 k := 0;

 while (i <= N) and (j <= M) do

   if A[i] = B[j] then begin

     Inc(i);

     Inc(j);

   end

   else if A[i] < B[j] then begin

     Inc(k);

     D[k] := A[i];

     Inc(i);

   end

   else if A[i] > B[j] then

     Inc(j);

 while (i <= N) and (j > M) do begin

   Inc(k);

   D[k] := A[i];

   Inc(i);

 end;

end;

{ Проверка на вхождение A в B }

function Incl(const A, B: TSet; const N, M: Integer): Boolean;

var

 i, j: Integer;

begin

 Incl := False;

 if N > M then Exit;

 i := 1;

 j := 1;

 while (i <= N) and (j <= M) and (A[i] >= B[j]) do

   if A[i] > B[j] then

     Inc(j)

   else if A[i] = B[j] then begin

     Inc(i);

     Inc(j);

   end;

 Incl := i - 1 = N;

end;

{ Вывод на экран клавиш управления }

procedure Keys;

begin

 ClrScr;

 WriteLn('Выберите действие:');

 WriteLn;

 WriteLn('1 - ввод множества A');

 WriteLn('2 - ввод множества B');

 WriteLn('3 - проверка вхождения A в B');

 WriteLn('4 - вывести объеденение множеств A и B');

 WriteLn('5 - вывести пересечение множеств A и B');

 WriteLn('6 - вывести разность A \ B');

 WriteLn('0 - очистка экрана');

 WriteLn('Esc - выход');

 WriteLn;

end;

var

 N, M, K: Integer;

 A, B, C: TSet;

 v: Char;

begin

 Keys;

 N := 0;

 M := 0;

 repeat

   v := ReadKey; { Получаем номер действия }

   if v in ['3'..'6'] then Print_Sets(A, B, N, M);

   case v of

     '1':

       begin

         WriteLn('Введите множество A:');

         Set_Input(A, N);

         WriteLn('Готово.');

         WriteLn;

       end;

     '2':

       begin

         WriteLn('Введите множество B:');

         Set_Input(B, M);

         WriteLn('Готово.');

         WriteLn;

       end;

     '3': if Incl(A, B, N, M) then WriteLn('A входит в B') else WriteLn('A не входит в B');

     '4':

       begin

         WriteLn('Объединение A и B:');

         Union(C, K, A, B, N, M);

         Print(C, K);

       end;

     '5':

       begin

         WriteLn('Пересечение A и B:');

         Product(C, K, A, B, N, M);

         Print(C, K);

       end;

     '6':

       begin

         WriteLn('Разность A \ B:');

         Diff(C, K, A, B, N, M);

         Print(C, K);

       end;

     '0': Keys;

   end;

 until v = #27;

end.
Результат работы программы.


 

А также другие работы, которые могут Вас заинтересовать

4966. Класс как основа технологии объектно-ориентированного программирования (ООП) 25.77 KB
  Класс как основа технологии объектно-ориентированного программирования (ООП) Основные составляющие технологии ООП Инкапсуляция – объединение элементов данных и действий над ними в класс с ограничением доступа к элементам данных. Это означает...
4967. Наследование как основа создания иерархии классов 22.18 KB
  Наследование как основа создания иерархии классов Наследование Наследование – создание новых классов на основе ранее созданных классов. Класс, на основании которого формируется новый класс, называют базовым (родительским) классом. Новый класс...
4968. Полиморфизм и виды его операций 30.97 KB
  Полиморфизм Полиморфизм – использование одного и того же имени функции, операции или класса для разных типов данных. Полиморфизм позволяет многократно не переписывать фрагменты программы, реализующие один и тот же алгоритм для разных типов...
4969. Классы структур данных 39.21 KB
  Классы структур данных Классификация структур данных Структура данных – совокупность взаимосвязанных программных объектов. К стандартным структурам данным относятся: - массивы указателей - однонаправленные списки - двунаправленные списки - д...
4970. Сравнение однонаправленного и двунаправленного списка 65.03 KB
  Списки Список – линейная структура, каждый элемент которой содержит адрес соседних элементов. Различают однонаправленные и двунаправленные списки. В однонаправленном списке каждый элемент содержит адрес следующего элемента. В двунаправленном сп...
4971. Шаблон и шаблонный класс 43.86 KB
  Шаблон При решении практических задач возникает необходимость создания семейства классов для формирования для описания похожих объектов. Формирование семейства классов целесообразно при описании структур данных, например, массивов указателей, списко...
4972. Стандартная библиотека шаблонов STL 25.77 KB
  Стандартная библиотека шаблонов STL Практическая деятельность программистов в течение нескольких десятков лет привела широкому распространению ряда способов организации структур данных, например, массив, список, очередь и т.д. Эти структуры данных с...
4973. Виртуальные и статические элементы классов 28.83 KB
  Виртуальные и статические элементы классов Виртуальные функции При создании производных классов на основе базовых путем наследования часто возникает ситуация, когда в нескольких класса используется функция с одними и тем же именем и набором параметр...
4974. Введение в программирование под Windows на C++ 28.81 KB
  Введение в программирование под Windows. Развитие графической операционной системы Windows привело к тому, что программы, поддерживающие консольный ввод исходных данных и вывод результатов в текстовом режиме стремительно устаревает. К современным пр...