3120

Множества и операции над ними

Лабораторная работа

Информатика, кибернетика и программирование

Множества и операции над ними Написать программу, в которой для конечных упорядоченных множеств реализовать все основные операции с помощью алгоритма типа слияния. Допустима организация множеств в виде списка или в виде массива...

Русский

2012-10-24

133 KB

106 чел.

Множества и операции над ними

Написать программу, в которой для конечных упорядоченных множеств реализовать все основные операции (È , Ç , Í , \) с помощью алгоритма типа слияния (по материалам главы 1, п.1.2). Допустима организация множеств в виде списка или в виде массива.

Работа программы должна происходить следующим образом:

  1.  На вход подаются два упорядоченных множества A и B (вводятся с клавиатуры, элементы множеств – буквы латинского алфавита).
  2.  После ввода множеств выбирается требуемая операция (посредством текстового меню, вводом определенного символа в ответ на запрос – выбор по желанию автора). Операции: вхождение AÍ B, AÈ B, AÇ B, A\B (дополнительно: B\A, AD B, BÍ A).
  3.  Программа посредством алгоритма типа слияния определяет результат выбранной операции и выдает его на экран с необходимыми пояснениями. Одновременно с результатом на экране должны присутствовать и исходные множества.
  4.  Возврат на п.2 (выбор операции).
  5.  Завершение работы программы – из п.2 (например, по ESC).

Дополнительно: предусмотреть возможность возврата не только к выбору операции (п.2), но и к вводу новых множеств (п.1). Выход в таком случае должен быть возможен из любого пункта (1 или 2).

Замечание: Исходные множества не должны содержать повторяющихся элементов (при обработке входных данных такие элементы следует удалять). Если исходные множества не упорядочены, нужно отсортировать их по возрастанию. Только после такой обработки над множествами возможно выполнять требуемые операции.


Решение.

Множества будем хранить как массив с нумерацией элементов, начинающейся с единицы.

Объединение множеств.

Обозначим через i номер текущего рассматриваемого элемента в множестве A, через j – номер текущего рассматриваемого элемента множества B. Будем получать множество U, представляющее собой объединение множеств A и B. Через k обозначим мощность множества U. Также k будет и номером последнего добавленного элемента в U.

Алгоритм решения.

  1.  Положить i = j =1, k = 0.
  2.  Если ещё не просмотрены все элементы множеств A, B выполнить:
    1.  Если в A ещё есть элементы, и в B есть элементы и A[i] = B[j], то
      1.  Добавить A[i] в U, то есть k := k + 1 и U[k] := A[i]
      2.  Перейти к следующим элементам в A и B, то есть i := i + 1 и j := j + 1
    2.  Если в B уже все элементы были просмотрены или же A[i] < B[j] (при условии, что в A не все элементы были просмотрены) выполнить:
      1.  Добавить A[i] в U, то есть k := k + 1 и U[k] := A[i]
      2.  Перейти к следующему элементу множества A, то есть i := i + 1
    3.  Во всех остальных случаях (то есть когда в A уже все элементы просмотрены или же если A[i] > B[j]) выполнить:
      1.  Добавить B[j] в U, то есть k := k + 1 и U[k] := B[j];
      2.  Перейти к следующему элементу множества B, то есть j := j + 1
    4.  Перейти к пункту 2.

Как видно, на каждом шаге мы добавляем в U минимальный элемент из A[i] и B[j] и переходим к рассмотрению следующего элемента.

Пересечение множеств.

Обозначим через i номер текущего рассматриваемого элемента в множестве A, через j – номер текущего рассматриваемого элемента множества B. Будем получать множество P, представляющее собой пересечение множеств A и B. Через k обозначим мощность множества P. Также k будет и номером последнего добавленного элемента в P.

Алгоритм решения.

  1.  Положить i = j = 1 и k = 0.
  2.  Если в A и B (одновременно) есть ещё непросмотренные элементы, выполнить:
    1.  Если A[i] = B[j], то выполнить:
      1.  Добавить A[i] в U, то есть k := k + 1 и U[k] := A[i]
      2.  Перейти к следующим элементам множеств A, B, то есть i := i + 1 и j := j + 1
    2.  Если A[i] < B[j], то перейти к следующему элементу множества A, то есть i := i +1
    3.  В остальных случаях (то есть когда A[i] > B[j]) перейти к следующему элементу множества B, то есть j := j + 1
    4.  Перейти к пункту 2.

Разность множеств.

Обозначим через i номер текущего рассматриваемого элемента в множестве A, через j – номер текущего рассматриваемого элемента множества B. Будем получать множество D, представляющее собой множество A без элементов множества B. Через k обозначим мощность множества D. Также k будет и номером последнего добавленного элемента в D.

Алгоритм решения.

  1.  Положить i = j = 1 и k = 0.
  2.  Если в A и B (одновременно) ещё есть непросмотренные элементы, выполнить:
    1.  Если A[i] = B[j], то переходим к следующим элементам множеств A и B, так как равные элементы вычлись и в D ничего добавлять не надо. Выполняем i := i + 1 и j := j + 1
    2.  Если A[i] < B[j], то, в силу упорядоченности, в множестве B уже точно нет элемента, равного A[i], поэтому ничто не вычитается. Добавляем A[i] в D, то есть k := k + 1 и D[k] := A[i], и переходим к следующему элементу в A, то есть i := i + 1
    3.  Если A[i] > B[j], то берём следующий элемент из B (так как из A исключить элемент B[i] ввиду того, что в A нет такого элемента), то есть j := j + 1
    4.  Переходим к пункту 2.

Проверка вхождения A в B.

Обозначим через i номер текущего рассматриваемого элемента в множестве A, через j – номер текущего рассматриваемого элемента множества B.

Алгоритм решения.

  1.  Если мощность A больше мощности B, то, очевидно, что A в B не входит. Завершить работу.
  2.  Положить i = j = 1.
  3.  Если в A и B (одновременно) есть ещё непросмотренные элементы, выполнить:
    1.  Если A[i] > B[i], то перейти к следующему элементу в B, то есть j := j + 1
    2.  Если A[i] = B[j], то перейти к следующим элементам в A и B, то есть i := i + 1 и j := j + 1
    3.  Перейти к пункту 3.
  4.  Если i - 1 равно N (то есть мы перебрали все элементы из A, а это в нашем алгоритме возможно лишь тогда, когда для каждого элемента из A имеется такой же элемент в B), то A входит в B, иначе не входит.


Исходный код на
Borland Pascal 7.

program lab1;

uses

 Crt;

const

 Nmax = 50;  { Макс. кол-во элементов множества }

type

 T = Char; { Тип элементов множества }

 TSet = Array[1..Nmax] of T; { Само множество }

{ Сортировка выбором по неубыванию }

procedure Sort(var A: TSet; const N: Integer);

var

 i, j, k: Integer;

 tmp: T;

begin

 for i := 1 to N - 1 do begin

   k := i;

   for j := i + 1 to N do

     if A[j] < A[k] then k := j;

   tmp := A[i];

   A[i] := A[k];

   A[k] := tmp;

 end;

end;

{ Ввод множества }

procedure Set_Input(var A: TSet; var N: Integer);

var

 i, j: Integer;

 tmp: T;

 F: Boolean;

begin

 Reset(Input);

 N := 0;

 while not SeekEoLn do begin

   Inc(N);

   Read(A[N]);

 end;

 Sort(A, N);

 F := False;

 i := 1;

 while i < N do begin

   if A[i] = A[i + 1] then begin

     F := True;

     Dec(N);

     for j := i + 1 to N do

       A[j] := A[j + 1];

   end

   else

     Inc(i);

 end;

 if F then WriteLn('Повторяющиеся элементы удалены.');

end;

{ Печать множества }

procedure Print(const A: TSet; const N: Integer);

var

 i: Integer;

begin

 for i := 1 to N do

   Write(A[i], ' ');

 if N = 0 then Write('Пустое множество.');

 WriteLn;

end;

{ Печать множеств A, B }

procedure Print_Sets(const A, B: TSet; const N, M: Integer);

var

 i: Integer;

begin

 WriteLn;

 Write('Множество A:  ');

 for i := 1 to N do

   Write(A[i], ' ');

 WriteLn;

 Write('Множество B:  ');

 for i := 1 to M do

   Write(B[i], ' ');

 WriteLn;

end;

{ Объединение множеств A и B методом слияния }

procedure Union(var U: TSet; var k: Integer; const A, B: TSet; const N, M: Integer);

var

 i, j: Integer;

begin

 i := 1;

 j := 1;

 k := 0;

 while (i <= N) or (j <= M) do

   if (j <= M) and (i <= N) and (A[i] = B[j]) then begin

     Inc(k);

     U[k] := A[i];

     Inc(i);

     Inc(j);

   end

   else if (j > M) or (i <= N) and (A[i] < B[j]) then begin

     Inc(k);

     U[k] := A[i];

     Inc(i);

   end

   else begin

     Inc(k);

     U[k] := B[j];

     Inc(j);

   end;

end;

{ Пересечение множеств A, B методом слияния }

procedure Product(var P: TSet; var k: Integer; const A, B: TSet; const N, M: Integer);

var

 i, j, W: Integer;

begin

 i := 1;

 j := 1;

 k := 0;

 while (i <= N) and (j <= M) do

   if (A[i] = B[j]) then begin

     Inc(k);

     P[k] := A[i];

     Inc(i);

     Inc(j);

   end

   else if A[i] < B[j] then

     Inc(i)

   else

     Inc(j);

end;

{ Разность множеств A, B методом слияния }

procedure Diff(var D: TSet; var k: Integer; const A, B: TSet; const N, M: Integer);

var

 i, j: Integer;

begin

 i := 1;

 j := 1;

 k := 0;

 while (i <= N) and (j <= M) do

   if A[i] = B[j] then begin

     Inc(i);

     Inc(j);

   end

   else if A[i] < B[j] then begin

     Inc(k);

     D[k] := A[i];

     Inc(i);

   end

   else if A[i] > B[j] then

     Inc(j);

 while (i <= N) and (j > M) do begin

   Inc(k);

   D[k] := A[i];

   Inc(i);

 end;

end;

{ Проверка на вхождение A в B }

function Incl(const A, B: TSet; const N, M: Integer): Boolean;

var

 i, j: Integer;

begin

 Incl := False;

 if N > M then Exit;

 i := 1;

 j := 1;

 while (i <= N) and (j <= M) and (A[i] >= B[j]) do

   if A[i] > B[j] then

     Inc(j)

   else if A[i] = B[j] then begin

     Inc(i);

     Inc(j);

   end;

 Incl := i - 1 = N;

end;

{ Вывод на экран клавиш управления }

procedure Keys;

begin

 ClrScr;

 WriteLn('Выберите действие:');

 WriteLn;

 WriteLn('1 - ввод множества A');

 WriteLn('2 - ввод множества B');

 WriteLn('3 - проверка вхождения A в B');

 WriteLn('4 - вывести объеденение множеств A и B');

 WriteLn('5 - вывести пересечение множеств A и B');

 WriteLn('6 - вывести разность A \ B');

 WriteLn('0 - очистка экрана');

 WriteLn('Esc - выход');

 WriteLn;

end;

var

 N, M, K: Integer;

 A, B, C: TSet;

 v: Char;

begin

 Keys;

 N := 0;

 M := 0;

 repeat

   v := ReadKey; { Получаем номер действия }

   if v in ['3'..'6'] then Print_Sets(A, B, N, M);

   case v of

     '1':

       begin

         WriteLn('Введите множество A:');

         Set_Input(A, N);

         WriteLn('Готово.');

         WriteLn;

       end;

     '2':

       begin

         WriteLn('Введите множество B:');

         Set_Input(B, M);

         WriteLn('Готово.');

         WriteLn;

       end;

     '3': if Incl(A, B, N, M) then WriteLn('A входит в B') else WriteLn('A не входит в B');

     '4':

       begin

         WriteLn('Объединение A и B:');

         Union(C, K, A, B, N, M);

         Print(C, K);

       end;

     '5':

       begin

         WriteLn('Пересечение A и B:');

         Product(C, K, A, B, N, M);

         Print(C, K);

       end;

     '6':

       begin

         WriteLn('Разность A \ B:');

         Diff(C, K, A, B, N, M);

         Print(C, K);

       end;

     '0': Keys;

   end;

 until v = #27;

end.
Результат работы программы.


 

А также другие работы, которые могут Вас заинтересовать

39069. Тестированию программного обеспечения с использованием языка программирования C# и NUnit-тестов 82.5 KB
  Тестовая деятельность предусматривающая эксплуатацию программного продукта носит название динамического тестирования. Статическое и динамическое тестирование дополняют друг друга и каждый из этих типов тестирования реализует собственный подход к выявлению ошибок. К четырем компонентам которые должны быть оптимизированы для целей быстрого тестирования относятся персонал процесс комплексных испытаний статическое тестирование и динамическое тестирование. 1 Для выполнения быстрого тестирования нужны хорошо подготовленные и гибкие...
39070. Использование программных продуктов CRM на российском рынке 304.5 KB
  Системы управления взаимоотношения с клиентами CRM Система управления взаимоотношениями с клиентами CRM CRMсистема сокращение от англ. CRM модель взаимодействия полагающая что центром всей философии бизнеса является клиент а основными направлениями деятельности являются меры по поддержке эффективного маркетинга продаж и обслуживания клиентов. Состав системы CRMсистема может включать в себя: Фронтальную часть обеспечивающую обслуживание клиентов на точках продаж с автономной распределенной или централизованной обработкой...
39071. Универсальный язык моделирования (UML) 128.5 KB
  UML – это набор различных видов диаграмм: диаграмма классов диаграмма объектов диаграмма связей диаграмма вариантов использования текстовый сценарий диаграмма действий диаграмма состояний диаграмма последовательности UML – это не средство разработки программного обеспечения это всего лишь средство понятных иллюстраций разрабатываемого проекта. Варианты использования Сценарий. Диаграмма вариантов использования. Описание вариантов использования.
39072. Технология подготовки и решения задач с помощью компьютера 122.5 KB
  Сопровождение программы: доработка программы для решения конкретных задач; составление документации к pешенной задаче к математической модели к алгоpитму к пpогpамме к набору тестов к использованию. Процесс разработки программы можно выразить следующей формулой: На начальном этапе работы анализируются и формулируются требования к программе разрабатывается точное описание того что должна делать программа и каких результатов необходимо достичь с ее помощью. Полученный вариант программы подвергается систематическому тестированию...
39073. Использование компьютеров в науке и производстве 126 KB
  Системы автоматизированного проектирования САПР комплексные программнотехнические системы предназначенные для выполнения проектных работ с применением математических методов. Системы САПР широко используются в архитектуре электронике энергетике механике и др. Автоматизированные системы научных исследований АСНИ.
39074. MATLAB. Элементарные действия над матрицами 2.04 MB
  Исходные данные Две квадратные матрицы векторстолбец Задание: 1. Ввести две матрицы из текстовых файлов 2. Теоретическая справка: В MtLb можно использовать скаляры векторы и матрицы. Например Вводить небольшие по размеру матрицы удобно прямо из командной строки.
39075. MATLAB. Арифметические и логические операции. Графики функций 970.82 KB
  Задание: Выполнить арифметические и логические операции в том числе с комплексными числами. Комплексные числа. Числа можно считать константами. Числа используются в общепринятом представлении о них.
39076. MATLAB. Численное решение дифференциальных уравнений 315.39 KB
  Математический пакет MATLAB упростит решение дифференциальных уравнений. Для решения обыкновенных дифференциальных уравнений (ODE) могут быть применены численные методы, которые в MATLAB реализованы в специальных функциях-решателях...
39077. Структура электронной таблицы 45.5 KB
  Другие типы – электронная таблица с результатом анализа график отчет. STимеет возможность работы с таблицами с процентными данными при анализе они заполняются выбранным пользователями столбцом.