3120

Множества и операции над ними

Лабораторная работа

Информатика, кибернетика и программирование

Множества и операции над ними Написать программу, в которой для конечных упорядоченных множеств реализовать все основные операции с помощью алгоритма типа слияния. Допустима организация множеств в виде списка или в виде массива...

Русский

2012-10-24

133 KB

107 чел.

Множества и операции над ними

Написать программу, в которой для конечных упорядоченных множеств реализовать все основные операции (È , Ç , Í , \) с помощью алгоритма типа слияния (по материалам главы 1, п.1.2). Допустима организация множеств в виде списка или в виде массива.

Работа программы должна происходить следующим образом:

  1.  На вход подаются два упорядоченных множества A и B (вводятся с клавиатуры, элементы множеств – буквы латинского алфавита).
  2.  После ввода множеств выбирается требуемая операция (посредством текстового меню, вводом определенного символа в ответ на запрос – выбор по желанию автора). Операции: вхождение AÍ B, AÈ B, AÇ B, A\B (дополнительно: B\A, AD B, BÍ A).
  3.  Программа посредством алгоритма типа слияния определяет результат выбранной операции и выдает его на экран с необходимыми пояснениями. Одновременно с результатом на экране должны присутствовать и исходные множества.
  4.  Возврат на п.2 (выбор операции).
  5.  Завершение работы программы – из п.2 (например, по ESC).

Дополнительно: предусмотреть возможность возврата не только к выбору операции (п.2), но и к вводу новых множеств (п.1). Выход в таком случае должен быть возможен из любого пункта (1 или 2).

Замечание: Исходные множества не должны содержать повторяющихся элементов (при обработке входных данных такие элементы следует удалять). Если исходные множества не упорядочены, нужно отсортировать их по возрастанию. Только после такой обработки над множествами возможно выполнять требуемые операции.


Решение.

Множества будем хранить как массив с нумерацией элементов, начинающейся с единицы.

Объединение множеств.

Обозначим через i номер текущего рассматриваемого элемента в множестве A, через j – номер текущего рассматриваемого элемента множества B. Будем получать множество U, представляющее собой объединение множеств A и B. Через k обозначим мощность множества U. Также k будет и номером последнего добавленного элемента в U.

Алгоритм решения.

  1.  Положить i = j =1, k = 0.
  2.  Если ещё не просмотрены все элементы множеств A, B выполнить:
    1.  Если в A ещё есть элементы, и в B есть элементы и A[i] = B[j], то
      1.  Добавить A[i] в U, то есть k := k + 1 и U[k] := A[i]
      2.  Перейти к следующим элементам в A и B, то есть i := i + 1 и j := j + 1
    2.  Если в B уже все элементы были просмотрены или же A[i] < B[j] (при условии, что в A не все элементы были просмотрены) выполнить:
      1.  Добавить A[i] в U, то есть k := k + 1 и U[k] := A[i]
      2.  Перейти к следующему элементу множества A, то есть i := i + 1
    3.  Во всех остальных случаях (то есть когда в A уже все элементы просмотрены или же если A[i] > B[j]) выполнить:
      1.  Добавить B[j] в U, то есть k := k + 1 и U[k] := B[j];
      2.  Перейти к следующему элементу множества B, то есть j := j + 1
    4.  Перейти к пункту 2.

Как видно, на каждом шаге мы добавляем в U минимальный элемент из A[i] и B[j] и переходим к рассмотрению следующего элемента.

Пересечение множеств.

Обозначим через i номер текущего рассматриваемого элемента в множестве A, через j – номер текущего рассматриваемого элемента множества B. Будем получать множество P, представляющее собой пересечение множеств A и B. Через k обозначим мощность множества P. Также k будет и номером последнего добавленного элемента в P.

Алгоритм решения.

  1.  Положить i = j = 1 и k = 0.
  2.  Если в A и B (одновременно) есть ещё непросмотренные элементы, выполнить:
    1.  Если A[i] = B[j], то выполнить:
      1.  Добавить A[i] в U, то есть k := k + 1 и U[k] := A[i]
      2.  Перейти к следующим элементам множеств A, B, то есть i := i + 1 и j := j + 1
    2.  Если A[i] < B[j], то перейти к следующему элементу множества A, то есть i := i +1
    3.  В остальных случаях (то есть когда A[i] > B[j]) перейти к следующему элементу множества B, то есть j := j + 1
    4.  Перейти к пункту 2.

Разность множеств.

Обозначим через i номер текущего рассматриваемого элемента в множестве A, через j – номер текущего рассматриваемого элемента множества B. Будем получать множество D, представляющее собой множество A без элементов множества B. Через k обозначим мощность множества D. Также k будет и номером последнего добавленного элемента в D.

Алгоритм решения.

  1.  Положить i = j = 1 и k = 0.
  2.  Если в A и B (одновременно) ещё есть непросмотренные элементы, выполнить:
    1.  Если A[i] = B[j], то переходим к следующим элементам множеств A и B, так как равные элементы вычлись и в D ничего добавлять не надо. Выполняем i := i + 1 и j := j + 1
    2.  Если A[i] < B[j], то, в силу упорядоченности, в множестве B уже точно нет элемента, равного A[i], поэтому ничто не вычитается. Добавляем A[i] в D, то есть k := k + 1 и D[k] := A[i], и переходим к следующему элементу в A, то есть i := i + 1
    3.  Если A[i] > B[j], то берём следующий элемент из B (так как из A исключить элемент B[i] ввиду того, что в A нет такого элемента), то есть j := j + 1
    4.  Переходим к пункту 2.

Проверка вхождения A в B.

Обозначим через i номер текущего рассматриваемого элемента в множестве A, через j – номер текущего рассматриваемого элемента множества B.

Алгоритм решения.

  1.  Если мощность A больше мощности B, то, очевидно, что A в B не входит. Завершить работу.
  2.  Положить i = j = 1.
  3.  Если в A и B (одновременно) есть ещё непросмотренные элементы, выполнить:
    1.  Если A[i] > B[i], то перейти к следующему элементу в B, то есть j := j + 1
    2.  Если A[i] = B[j], то перейти к следующим элементам в A и B, то есть i := i + 1 и j := j + 1
    3.  Перейти к пункту 3.
  4.  Если i - 1 равно N (то есть мы перебрали все элементы из A, а это в нашем алгоритме возможно лишь тогда, когда для каждого элемента из A имеется такой же элемент в B), то A входит в B, иначе не входит.


Исходный код на
Borland Pascal 7.

program lab1;

uses

 Crt;

const

 Nmax = 50;  { Макс. кол-во элементов множества }

type

 T = Char; { Тип элементов множества }

 TSet = Array[1..Nmax] of T; { Само множество }

{ Сортировка выбором по неубыванию }

procedure Sort(var A: TSet; const N: Integer);

var

 i, j, k: Integer;

 tmp: T;

begin

 for i := 1 to N - 1 do begin

   k := i;

   for j := i + 1 to N do

     if A[j] < A[k] then k := j;

   tmp := A[i];

   A[i] := A[k];

   A[k] := tmp;

 end;

end;

{ Ввод множества }

procedure Set_Input(var A: TSet; var N: Integer);

var

 i, j: Integer;

 tmp: T;

 F: Boolean;

begin

 Reset(Input);

 N := 0;

 while not SeekEoLn do begin

   Inc(N);

   Read(A[N]);

 end;

 Sort(A, N);

 F := False;

 i := 1;

 while i < N do begin

   if A[i] = A[i + 1] then begin

     F := True;

     Dec(N);

     for j := i + 1 to N do

       A[j] := A[j + 1];

   end

   else

     Inc(i);

 end;

 if F then WriteLn('Повторяющиеся элементы удалены.');

end;

{ Печать множества }

procedure Print(const A: TSet; const N: Integer);

var

 i: Integer;

begin

 for i := 1 to N do

   Write(A[i], ' ');

 if N = 0 then Write('Пустое множество.');

 WriteLn;

end;

{ Печать множеств A, B }

procedure Print_Sets(const A, B: TSet; const N, M: Integer);

var

 i: Integer;

begin

 WriteLn;

 Write('Множество A:  ');

 for i := 1 to N do

   Write(A[i], ' ');

 WriteLn;

 Write('Множество B:  ');

 for i := 1 to M do

   Write(B[i], ' ');

 WriteLn;

end;

{ Объединение множеств A и B методом слияния }

procedure Union(var U: TSet; var k: Integer; const A, B: TSet; const N, M: Integer);

var

 i, j: Integer;

begin

 i := 1;

 j := 1;

 k := 0;

 while (i <= N) or (j <= M) do

   if (j <= M) and (i <= N) and (A[i] = B[j]) then begin

     Inc(k);

     U[k] := A[i];

     Inc(i);

     Inc(j);

   end

   else if (j > M) or (i <= N) and (A[i] < B[j]) then begin

     Inc(k);

     U[k] := A[i];

     Inc(i);

   end

   else begin

     Inc(k);

     U[k] := B[j];

     Inc(j);

   end;

end;

{ Пересечение множеств A, B методом слияния }

procedure Product(var P: TSet; var k: Integer; const A, B: TSet; const N, M: Integer);

var

 i, j, W: Integer;

begin

 i := 1;

 j := 1;

 k := 0;

 while (i <= N) and (j <= M) do

   if (A[i] = B[j]) then begin

     Inc(k);

     P[k] := A[i];

     Inc(i);

     Inc(j);

   end

   else if A[i] < B[j] then

     Inc(i)

   else

     Inc(j);

end;

{ Разность множеств A, B методом слияния }

procedure Diff(var D: TSet; var k: Integer; const A, B: TSet; const N, M: Integer);

var

 i, j: Integer;

begin

 i := 1;

 j := 1;

 k := 0;

 while (i <= N) and (j <= M) do

   if A[i] = B[j] then begin

     Inc(i);

     Inc(j);

   end

   else if A[i] < B[j] then begin

     Inc(k);

     D[k] := A[i];

     Inc(i);

   end

   else if A[i] > B[j] then

     Inc(j);

 while (i <= N) and (j > M) do begin

   Inc(k);

   D[k] := A[i];

   Inc(i);

 end;

end;

{ Проверка на вхождение A в B }

function Incl(const A, B: TSet; const N, M: Integer): Boolean;

var

 i, j: Integer;

begin

 Incl := False;

 if N > M then Exit;

 i := 1;

 j := 1;

 while (i <= N) and (j <= M) and (A[i] >= B[j]) do

   if A[i] > B[j] then

     Inc(j)

   else if A[i] = B[j] then begin

     Inc(i);

     Inc(j);

   end;

 Incl := i - 1 = N;

end;

{ Вывод на экран клавиш управления }

procedure Keys;

begin

 ClrScr;

 WriteLn('Выберите действие:');

 WriteLn;

 WriteLn('1 - ввод множества A');

 WriteLn('2 - ввод множества B');

 WriteLn('3 - проверка вхождения A в B');

 WriteLn('4 - вывести объеденение множеств A и B');

 WriteLn('5 - вывести пересечение множеств A и B');

 WriteLn('6 - вывести разность A \ B');

 WriteLn('0 - очистка экрана');

 WriteLn('Esc - выход');

 WriteLn;

end;

var

 N, M, K: Integer;

 A, B, C: TSet;

 v: Char;

begin

 Keys;

 N := 0;

 M := 0;

 repeat

   v := ReadKey; { Получаем номер действия }

   if v in ['3'..'6'] then Print_Sets(A, B, N, M);

   case v of

     '1':

       begin

         WriteLn('Введите множество A:');

         Set_Input(A, N);

         WriteLn('Готово.');

         WriteLn;

       end;

     '2':

       begin

         WriteLn('Введите множество B:');

         Set_Input(B, M);

         WriteLn('Готово.');

         WriteLn;

       end;

     '3': if Incl(A, B, N, M) then WriteLn('A входит в B') else WriteLn('A не входит в B');

     '4':

       begin

         WriteLn('Объединение A и B:');

         Union(C, K, A, B, N, M);

         Print(C, K);

       end;

     '5':

       begin

         WriteLn('Пересечение A и B:');

         Product(C, K, A, B, N, M);

         Print(C, K);

       end;

     '6':

       begin

         WriteLn('Разность A \ B:');

         Diff(C, K, A, B, N, M);

         Print(C, K);

       end;

     '0': Keys;

   end;

 until v = #27;

end.
Результат работы программы.


 

А также другие работы, которые могут Вас заинтересовать

11495. Информатика в 8 классе. Все уроки 2.76 MB
  Правила работы и безопасного поведения в компьютерном классе. Повторение структуры программы, типов данных, арифметических операций, организации ввода-вывода данных. Составление и Реализация алгоритмов с использованием операторов цикла. Применение текстового процессора в разработке документов из различных предметных областей...
11496. Алгоритмы растровой графики 153 KB
  Алгоритмы растровой графики Растром называется прямоугольная сетка точек формирующих изображение на экране компьютера. Каждая точка растра характеризуется двумя параметрами: своим положением на экране и своим цветом если монитор цветной или степенью яркости если м...
11497. Алгоритм вывода прямой линии 412 KB
  Алгоритм вывода прямой линии Поскольку экран растрового дисплея с электроннолучевой трубкой ЭЛТ можно рассматривать как матрицу дискретных элементов пикселов каждый из которых может быть подсвечен нельзя непосредственно провести отрезок из одной точки в другую.
11498. Текстовый редактор WORD. Поиск и замена фрагментов текста 43.5 KB
  ЛАБОРАТОРНАЯ РАБОТА № 4 Тема: Текстовый редактор WORD. Поиск и замена фрагментов текста. Режим поиска удобно использовать для того чтобы быстро найти в документе заданный фрагмент текста. Режим замены используется в тех случаях когда нужно не только найти какую...
11499. Природа медицинских данных 1.65 MB
  Природа медицинских данных. В медицинской практике часто используются выражения сбор данных или получение информации. Эти выражения могут трактоваться неверно на основе предположения что медицинская информация содержится в реальном мире в состоянии доступност
11500. Формирование структуры базы данных 114 KB
  Лабораторная работа 1. Формирование структуры базы данных. 1. Создайте новую базу данных. 2. Создайте таблицу базы данных. 3. Определите поля таблицы в соответствии с табл. 1.1. 4. Сохраните созданную таблицу. Таблица.1.1. Таблица данных Преподаватели ...
11501. Формирование запросов и отчетов для однотабличной базы дан 334.5 KB
  Лабораторная работа №2. Формирование запросов и отчетов для однотабличной базы данных. Задание 1. Формирование запросов на выборку. 1. На основе таблицы Преподаватели создайте простой запрос на выборку в котором должны отображаться фамилии имена отчества преподава
11502. Разработка инфологической модели и создание структуры реляционной базы данных 154.5 KB
  Лабораторная работа №3. Разработка инфологической модели и создание структуры реляционной базы данных. Задание 1. Создание реляционной базы данных. Создайте базу данных Деканат. Создайте структуру таблицы Студенты. Создайте структуру таблицы Дисциплины...
11503. Формирование сложных запросов 50.5 KB
  Лабораторная работа №4. Формирование сложных запросов. Задание: Разработайте запрос с параметрами о студентах заданной группы в котором при вводе в окно параметров номера группы на экран должен выводиться состав этой группы. Создайте запрос в котором выводя...