3132

Планирование многофакторных экспериментов

Контрольная

Информатика, кибернетика и программирование

Введение Исследование является экспериментом, если входные переменные изменяются исследователем в точно учитываемых условиях, позволяя управлять ходом опытов и воссоздавать их результаты каждый раз при повторении с точностью до случайных ошибок. П...

Русский

2012-10-25

207 KB

149 чел.

1 Введение

Исследование является экспериментом, если входные переменные изменяются исследователем в точно учитываемых условиях, позволяя управлять ходом опытов и воссоздавать их результаты каждый раз при повторении с точностью до случайных ошибок.

Планирование и анализ эксперимента представляет собой важную ветвь статистических методов, разработанную для решения разнообразных задач, возникающих перед исследователями. В одном случае необходимо обнаружить и проверить причинную связь между входными переменными (факторами) и выходными переменными (откликами), в другом – отыскать оптимальные условия ведения процесса или сравнить изучаемые объекты и т.д.

Под планированием эксперимента понимается процедура выбора числа опытов и условий их проведения, необходимых для решения поставленной задачи с требуемой точностью. Все переменные, определяющие изучаемый объект, изменяются одновременно по специальным правилам. Результаты эксперимента представляются в виде математической модели, обладающей определенными статистическими свойствами, например минимальной дисперсией оценок параметров модели.

Для экспериментаторов, которые не занимаются планированием многофакторного эксперимента, наиболее привычным методом исследования является однофакторный эксперимент. Он заключается в том, что варьируется один фактор на нескольких уровнях, а все другие факторы поддерживаются постоянными. В этом случае можно получить количественную оценку эффекта только одного фактора.

Влияние других факторов оценить нельзя. Выводы о влиянии изучаемого фактора могут существенно различаться в зависимости от уровня фиксирования прочих факторов. Это часто приводит к ошибочным рекомендациям. Лишь в тех случаях, когда отклик является функцией одного фактора, однофакторный эксперимент вполне закономерен.

Однако на практике приходится иметь дело с многофакторными объектами, где однофакторный эксперимент неэффективен.

В многофакторных планах одновременно варьируется несколько факторов, а не каждый в отдельности.

План должен быть составлен так, чтобы при статистической обработке имелась возможность хорошо проанализировать эксперимент: проверить: существуют ли эффекты изучаемых факторов, определить величину этих эффектов (не увидеть несуществующие и не "проглядеть" действительные эффекты), найти наименьший значимый эффект и т.д. Оценки эффектов факторов можно считать достоверными только тогда, когда ни неоднородность экспериментальных единиц, ни другие неучтенные факторы не в состоянии привести к полученному результату.

В планировании эксперимента сам эксперимент рассматривается как объект исследования и оптимизации. Здесь осуществляется оптимальное управление ведением эксперимента, в зависимости от характера изучаемого объекта и целей исследования обоснованно выбираются тип планирование эксперимента, метод обработки данных. К различным типам эксперимента относятся: экстремальный, отсеивающий, сравнительный, описательный и другие виды.

Планирование многофакторных экспериментов – новый подход к организации и проведению экстремальных исследований сложных систем. Цель планирования эксперимента – извлечение максимума информации при заданных затратах на эксперимент либо минимизация затрат при получении информации, достаточной для решения задач. Планирование эксперимента позволяет соразмерить число опытов поставленной задаче.

2. Расчет полного факторного эксперимента типа 22

В ходе проведения полного факторного эксперимента типа 22, проводимого с целью поиска минимального уровня колебаний мгновенной скорости (, об/мин) шагового фильма (ШД) типа ДШИ-200, при изменении обобщенных параметров привода ШД:

Х1≡kt-безразмерная электромагнитная постоянная времени;

Х2≡µн-относительный момент нагрузки,

получена матрица планирования вида:

1

2

1

5

+1

+1

+1

1.82

1.98

1.900

1.765

2

6

+1

-1

+1

0.97

0.92

0.945

1.080

3

7

+1

+1

-1

1.08

1.02

1.050

1.185

4

8

+1

-1

-1

0.69

0.58

0.635

0.500

С учетом значений нулевого уровня фактора и их интервалов варьирования:

 

 

2.1 Расчет среднего значения




2.2 Расчет коэффициентов регрессии

2.3 Расчет значения модели

  

2.4 Расчет дисперсии


Максимальная дисперсия оказалась в опыте №1

2.5 Расчет дисперсии параметра оптимизации равна


2.6 Дисперсия адекватности и критерий Фишера


Табличное значение критерия Фишера для
f1=1, f2=1 F=164.45. Наше значение не превышает табличного, следовательно модель адекватна.

2.7 Проверка значимости коэффициентов

Для этого найдем дисперсию коэффициента регрессии :


тогда доверительный интервал равен:

где t = 12.7060 – табличное значение критерия Стьюдента при количестве степеней свободы f=1 и p=0.95. Абсолютная величина наших коэффициентов  больше доверительного интервала, поэтому они все значимы.

2.8 Расчет шагов крутого восхождения

С учетом значений нулевого уровня факторов и их интервалов варьирования:

  

 

вектор

Шаги восхождения:

1)      

         

2)      

         

3)      

         

4)       

         

5)      

         

6)      

         

7)      

         

8)      

         

 

Рис. 1.

В результате расчета и построение графика,  показано, что система не вышла за пределы данной области за десять шагов.

Заключение

В результате проведённых опытов, мы получили адекватную линейную модель, которая  имеет вид полинома первой степени. Коэффициенты, которого являются производными целевой функции по соответствующим переменным.


Приложение А

Генератор псевдослучайной последовательности проведения эксперимента:

function t =gen(val,rs)

for j = 1:val

   b(1,j)=cos(j+rs);

end;

for i= 1: val;

   z=0;

   test=b(1,i);

   for j= 1: val

        if (test >=b(1,j))

        z=z+1;

        end;

        ind(1,i)=z;

   end;

end;    

t=ind;


Приложение Б

Расчет параметров модели:

>> a = 8;

b=gen(a,4)

load isx.txt

isx

%Среднее значение y

for i = 1 : 4

   sum=0;

   for j = 6 : 7

       sum = sum + isx (i,j);

       end;

   isx(i,8) = sum / 2;

   end;

isx

%Коэффициенты регресии

b0 = 0;

for i = 1 : 4

   b0 = b0 + isx(i,3)*isx(i,8);

   end;

b0 = b0 / 4

b1 = 0;

for i = 1 : 4

   b1 = b1 + isx(i,4)*isx(i,8);

   end;

b1 = b1 / 4

b2 = 0;

for i = 1 : 4

   b2 = b2 + isx(i,5)*isx(i,8);

   end;

b2 = b2 / 4

%Модель

for i = 1 : 4

   isx (i,9) = b0*isx(i,3) + b1*isx(i,4) + b2*isx(i,5);

   end;

isx

%Дисперсия

for i = 1 : 4

    des(i,1)=((isx(i,6)-isx(i,8))*(isx(i,6)-isx(i,8))+(isx(i,7)-isx(i,8))*(isx(i,7)-isx(i,8)))/2 ;

    end;

 des

%Дисперсия параметра оптимизации

 s = 0;

 for i = 1 : 4

    s = s + des(i,1);

    end;

sy = s    

s = s / 4

%Критерий Фишера

sa = 0;

for i = 1 : 4

    sa = sa + (isx(i,8)-isx(i,9))*(isx(i,8)-isx(i,9));

    end;

 sa 

 F = sa / s 

%Проверка значимости коэффициентов

 sb = sy / 4;

 dB = 12.7060 * sb

%Шаги крутого восхождения

 for i = 1 : 10

    x1(1,i) = 0.150 - b1 * 0.1 * i;

    x2(1,i) = 0.35 - b2 * 0.1 * i;

end;

x1

x2

plot(x1,x2)

b =

    5     8     6     3     1     2     4     7

isx =

 Columns 1 through 9

   1.0000    5.0000    1.0000    1.0000    1.0000    1.8200    1.9800   1.9000    1.7650

   2.0000    6.0000    1.0000   -1.0000    1.0000    0.9700    0.9200   0.9450    1.0800

   3.0000    7.0000    1.0000    1.0000   -1.0000    1.0800    1.0200   1.0500    1.1850

   4.0000    8.0000    1.0000   -1.0000   -1.0000    0.6900    0.5800   0.6350    0.5000

isx =

 Columns 1 through 9

   1.0000    5.0000    1.0000    1.0000    1.0000    1.8200    1.9800   1.9000    1.7650

   2.0000    6.0000    1.0000   -1.0000    1.0000    0.9700    0.9200   0.9450    1.0800

   3.0000    7.0000    1.0000    1.0000   -1.0000    1.0800    1.0200   1.0500    1.1850

   4.0000    8.0000    1.0000   -1.0000   -1.0000    0.6900    0.5800   0.6350    0.5000

  

b0 = 1.1325

b1 = 0.3425

b2 = 0.2900

isx =

 Columns 1 through 9

   1.0000    5.0000    1.0000    1.0000    1.0000    1.8200    1.9800   1.9000    1.7650

   2.0000    6.0000    1.0000   -1.0000    1.0000    0.9700    0.9200   0.9450    1.0800

   3.0000    7.0000    1.0000    1.0000   -1.0000    1.0800    1.0200   1.0500    1.1850

   4.0000    8.0000    1.0000   -1.0000   -1.0000    0.6900    0.5800   0.6350    0.5000

des =

   0.0064

   0.0006

   0.0009

   0.0030

sy =    0.0109

s =   0.0027

sa =   0.0729

F =  26.6301

dB =  0.0348

x1 =

 Columns 1 through 7

   0.1157    0.0815    0.0473    0.0130   -0.0212   -0.0555   -0.0897

 Columns 8 through 10

  -0.1240   -0.1582   -0.1925

x2 =

 Columns 1 through 7

   0.3210    0.2920    0.2630    0.2340    0.2050    0.1760    0.1470

 Columns 8 through 10

   0.1180    0.0890    0.0600


 

А также другие работы, которые могут Вас заинтересовать

41855. Ознакомление с устройством и функционированием счётчиков и испытание синхронного суммирующего, реверсивного и десятичного счётчиков 576.67 KB
  Между собой ячейки счётчика соединяют таким образом чтобы каждому числу импульсов соответствовали состояния 1 или 0 определенных ячеек. Каждый разряд счётчика может находиться в двух состояниях. Максимальное число N которое может быть записано в счётчике равно 2п 1 где п число разрядов счётчика.1 Условное изображение трехразрядного суммирующего счётчика показано на рис.
41856. Ознакомление с принципом работы и испытание интегрального цифроаналогового преобразователя 354.81 KB
  При построении устройств связывающих цифровое устройство с объектами использующими информацию в непрерывно изменяющейся форме требуется преобразование информации из аналоговой формы в цифровую и из цифровой в аналоговую. называют цифро-аналоговым преобразователем ЦАП. Сменяющиеся входные цифровые коды обуславливают сменяющееся ступенчатое напряжение на выходе L идеальная передаточная характеристика ЦАП. ЦАП с весовыми двоичновзвешенными сопротивлениями рис.
41857. АНАЛОГО-ЦИФРОВОЙ ПРЕОБРАЗОВАТЕЛЬ 234.35 KB
  Входным сигналом АЦП в течение некоторого промежутка времени t является постоянное напряжение равное отсчёту uвхkt входной аналоговой функции uвх. За это время на выходе АЦП формируется цифровой обычно двоичный код соответствующий дискретному отсчёту напряжения uвхkt. Количественная связь для любого момента времени определяется соотношением где u шаг квантования входного аналогового напряжения uвх; i погрешность преобразования напряжения uвхkt на данном шаге. Процесс квантования по уровню дискретизированной функции uвхkt...
41858. Изучение и анализ конструкций рамы 95.3 KB
  Ознакомились с устройством рамы различных автомобилей, научились анализировать их конструктивные особенности.
41860. Окислительно-восстановительное титрование. Иодометрическое определение пероксида водорода. Иодометрическое определение растворённого в воде кислорода 65.63 KB
  Сформировать умения по стандартизации раствора тиосульфата натрия; выполнению иодометрического определения пероксида водорода; иодометрического определения растворенного в воде кислорода. При этом к определяемому веществу добавляют взятое в заведомом избытке точное количество стандартного раствора иода. Какую среду сильнокислую слабокислую должен иметь раствор после добавления серной кислоты Почему при добавлении крахмала амилозы к раствору иода появляется синее окрашивание Какие ещё вещества могут взаимодействовать с иодом...
41861. Определение удельной теплоты плавления олова 286.55 KB
  Температура при которой вещество плавится называется температурой плавления вещества. Температура плавления для данного вещества при одинаковых условиях одинакова. Однако это не значит что в процессе плавления к телу не надо подводить энергию.
41862. Диаграмма Парето 48.04 KB
  Например если на складе находится большое число деталей проводить контроль всех деталей без всякого различия неэффективно. Но если разделить детали на группы по их стоимости то на долю группы наиболее дорогих деталей группа А составляющих 2030 от общего числа деталей придётся 7080 от общей стоимости всех деталей. На долю группы самых дешёвых деталей группа С составляющей 4050 от всего количества деталей придётся всего 510 от общей стоимости. Контроль деталей на складе будет эффективным если контроль деталей группы А будет...
41863. Редактирование рабочей книги. Построение диаграмм 976.65 KB
  Изучение способов работы с данными в ячейке. Изучение возможностей автозаполнения. Построение диаграмм. Создание и сохранение таблицы (рабочей книги). Форматирование содержимого ячеек, выбор диапазона ячеек и работа с ними, редактирование содержимого ячеек.