3132

Планирование многофакторных экспериментов

Контрольная

Информатика, кибернетика и программирование

Введение Исследование является экспериментом, если входные переменные изменяются исследователем в точно учитываемых условиях, позволяя управлять ходом опытов и воссоздавать их результаты каждый раз при повторении с точностью до случайных ошибок. П...

Русский

2012-10-25

207 KB

145 чел.

1 Введение

Исследование является экспериментом, если входные переменные изменяются исследователем в точно учитываемых условиях, позволяя управлять ходом опытов и воссоздавать их результаты каждый раз при повторении с точностью до случайных ошибок.

Планирование и анализ эксперимента представляет собой важную ветвь статистических методов, разработанную для решения разнообразных задач, возникающих перед исследователями. В одном случае необходимо обнаружить и проверить причинную связь между входными переменными (факторами) и выходными переменными (откликами), в другом – отыскать оптимальные условия ведения процесса или сравнить изучаемые объекты и т.д.

Под планированием эксперимента понимается процедура выбора числа опытов и условий их проведения, необходимых для решения поставленной задачи с требуемой точностью. Все переменные, определяющие изучаемый объект, изменяются одновременно по специальным правилам. Результаты эксперимента представляются в виде математической модели, обладающей определенными статистическими свойствами, например минимальной дисперсией оценок параметров модели.

Для экспериментаторов, которые не занимаются планированием многофакторного эксперимента, наиболее привычным методом исследования является однофакторный эксперимент. Он заключается в том, что варьируется один фактор на нескольких уровнях, а все другие факторы поддерживаются постоянными. В этом случае можно получить количественную оценку эффекта только одного фактора.

Влияние других факторов оценить нельзя. Выводы о влиянии изучаемого фактора могут существенно различаться в зависимости от уровня фиксирования прочих факторов. Это часто приводит к ошибочным рекомендациям. Лишь в тех случаях, когда отклик является функцией одного фактора, однофакторный эксперимент вполне закономерен.

Однако на практике приходится иметь дело с многофакторными объектами, где однофакторный эксперимент неэффективен.

В многофакторных планах одновременно варьируется несколько факторов, а не каждый в отдельности.

План должен быть составлен так, чтобы при статистической обработке имелась возможность хорошо проанализировать эксперимент: проверить: существуют ли эффекты изучаемых факторов, определить величину этих эффектов (не увидеть несуществующие и не "проглядеть" действительные эффекты), найти наименьший значимый эффект и т.д. Оценки эффектов факторов можно считать достоверными только тогда, когда ни неоднородность экспериментальных единиц, ни другие неучтенные факторы не в состоянии привести к полученному результату.

В планировании эксперимента сам эксперимент рассматривается как объект исследования и оптимизации. Здесь осуществляется оптимальное управление ведением эксперимента, в зависимости от характера изучаемого объекта и целей исследования обоснованно выбираются тип планирование эксперимента, метод обработки данных. К различным типам эксперимента относятся: экстремальный, отсеивающий, сравнительный, описательный и другие виды.

Планирование многофакторных экспериментов – новый подход к организации и проведению экстремальных исследований сложных систем. Цель планирования эксперимента – извлечение максимума информации при заданных затратах на эксперимент либо минимизация затрат при получении информации, достаточной для решения задач. Планирование эксперимента позволяет соразмерить число опытов поставленной задаче.

2. Расчет полного факторного эксперимента типа 22

В ходе проведения полного факторного эксперимента типа 22, проводимого с целью поиска минимального уровня колебаний мгновенной скорости (, об/мин) шагового фильма (ШД) типа ДШИ-200, при изменении обобщенных параметров привода ШД:

Х1≡kt-безразмерная электромагнитная постоянная времени;

Х2≡µн-относительный момент нагрузки,

получена матрица планирования вида:

1

2

1

5

+1

+1

+1

1.82

1.98

1.900

1.765

2

6

+1

-1

+1

0.97

0.92

0.945

1.080

3

7

+1

+1

-1

1.08

1.02

1.050

1.185

4

8

+1

-1

-1

0.69

0.58

0.635

0.500

С учетом значений нулевого уровня фактора и их интервалов варьирования:

 

 

2.1 Расчет среднего значения




2.2 Расчет коэффициентов регрессии

2.3 Расчет значения модели

  

2.4 Расчет дисперсии


Максимальная дисперсия оказалась в опыте №1

2.5 Расчет дисперсии параметра оптимизации равна


2.6 Дисперсия адекватности и критерий Фишера


Табличное значение критерия Фишера для
f1=1, f2=1 F=164.45. Наше значение не превышает табличного, следовательно модель адекватна.

2.7 Проверка значимости коэффициентов

Для этого найдем дисперсию коэффициента регрессии :


тогда доверительный интервал равен:

где t = 12.7060 – табличное значение критерия Стьюдента при количестве степеней свободы f=1 и p=0.95. Абсолютная величина наших коэффициентов  больше доверительного интервала, поэтому они все значимы.

2.8 Расчет шагов крутого восхождения

С учетом значений нулевого уровня факторов и их интервалов варьирования:

  

 

вектор

Шаги восхождения:

1)      

         

2)      

         

3)      

         

4)       

         

5)      

         

6)      

         

7)      

         

8)      

         

 

Рис. 1.

В результате расчета и построение графика,  показано, что система не вышла за пределы данной области за десять шагов.

Заключение

В результате проведённых опытов, мы получили адекватную линейную модель, которая  имеет вид полинома первой степени. Коэффициенты, которого являются производными целевой функции по соответствующим переменным.


Приложение А

Генератор псевдослучайной последовательности проведения эксперимента:

function t =gen(val,rs)

for j = 1:val

   b(1,j)=cos(j+rs);

end;

for i= 1: val;

   z=0;

   test=b(1,i);

   for j= 1: val

        if (test >=b(1,j))

        z=z+1;

        end;

        ind(1,i)=z;

   end;

end;    

t=ind;


Приложение Б

Расчет параметров модели:

>> a = 8;

b=gen(a,4)

load isx.txt

isx

%Среднее значение y

for i = 1 : 4

   sum=0;

   for j = 6 : 7

       sum = sum + isx (i,j);

       end;

   isx(i,8) = sum / 2;

   end;

isx

%Коэффициенты регресии

b0 = 0;

for i = 1 : 4

   b0 = b0 + isx(i,3)*isx(i,8);

   end;

b0 = b0 / 4

b1 = 0;

for i = 1 : 4

   b1 = b1 + isx(i,4)*isx(i,8);

   end;

b1 = b1 / 4

b2 = 0;

for i = 1 : 4

   b2 = b2 + isx(i,5)*isx(i,8);

   end;

b2 = b2 / 4

%Модель

for i = 1 : 4

   isx (i,9) = b0*isx(i,3) + b1*isx(i,4) + b2*isx(i,5);

   end;

isx

%Дисперсия

for i = 1 : 4

    des(i,1)=((isx(i,6)-isx(i,8))*(isx(i,6)-isx(i,8))+(isx(i,7)-isx(i,8))*(isx(i,7)-isx(i,8)))/2 ;

    end;

 des

%Дисперсия параметра оптимизации

 s = 0;

 for i = 1 : 4

    s = s + des(i,1);

    end;

sy = s    

s = s / 4

%Критерий Фишера

sa = 0;

for i = 1 : 4

    sa = sa + (isx(i,8)-isx(i,9))*(isx(i,8)-isx(i,9));

    end;

 sa 

 F = sa / s 

%Проверка значимости коэффициентов

 sb = sy / 4;

 dB = 12.7060 * sb

%Шаги крутого восхождения

 for i = 1 : 10

    x1(1,i) = 0.150 - b1 * 0.1 * i;

    x2(1,i) = 0.35 - b2 * 0.1 * i;

end;

x1

x2

plot(x1,x2)

b =

    5     8     6     3     1     2     4     7

isx =

 Columns 1 through 9

   1.0000    5.0000    1.0000    1.0000    1.0000    1.8200    1.9800   1.9000    1.7650

   2.0000    6.0000    1.0000   -1.0000    1.0000    0.9700    0.9200   0.9450    1.0800

   3.0000    7.0000    1.0000    1.0000   -1.0000    1.0800    1.0200   1.0500    1.1850

   4.0000    8.0000    1.0000   -1.0000   -1.0000    0.6900    0.5800   0.6350    0.5000

isx =

 Columns 1 through 9

   1.0000    5.0000    1.0000    1.0000    1.0000    1.8200    1.9800   1.9000    1.7650

   2.0000    6.0000    1.0000   -1.0000    1.0000    0.9700    0.9200   0.9450    1.0800

   3.0000    7.0000    1.0000    1.0000   -1.0000    1.0800    1.0200   1.0500    1.1850

   4.0000    8.0000    1.0000   -1.0000   -1.0000    0.6900    0.5800   0.6350    0.5000

  

b0 = 1.1325

b1 = 0.3425

b2 = 0.2900

isx =

 Columns 1 through 9

   1.0000    5.0000    1.0000    1.0000    1.0000    1.8200    1.9800   1.9000    1.7650

   2.0000    6.0000    1.0000   -1.0000    1.0000    0.9700    0.9200   0.9450    1.0800

   3.0000    7.0000    1.0000    1.0000   -1.0000    1.0800    1.0200   1.0500    1.1850

   4.0000    8.0000    1.0000   -1.0000   -1.0000    0.6900    0.5800   0.6350    0.5000

des =

   0.0064

   0.0006

   0.0009

   0.0030

sy =    0.0109

s =   0.0027

sa =   0.0729

F =  26.6301

dB =  0.0348

x1 =

 Columns 1 through 7

   0.1157    0.0815    0.0473    0.0130   -0.0212   -0.0555   -0.0897

 Columns 8 through 10

  -0.1240   -0.1582   -0.1925

x2 =

 Columns 1 through 7

   0.3210    0.2920    0.2630    0.2340    0.2050    0.1760    0.1470

 Columns 8 through 10

   0.1180    0.0890    0.0600


 

А также другие работы, которые могут Вас заинтересовать

4686. Місцеві фінанси 54 KB
  Місцеві фінанси Суть місцевих фінансів, їх роль в економічному і соціальному розвитку територій. Місцеві бюджети, їх зміст і роль. Доходи і видатки місцевих бюджетів. Регіональні позабюджетні фонди. 1. Суть місцевих фінансів, їх роль у економі...
4687. Державні цільові фонди 54.5 KB
  Державні цільові фонди Необхідність державних цільових фондів та правові основи їх утворення. Пенсійний фонд України, його функції, формування та використання. Фонд соціального страхування України, його функції, формування та викор...
4688. Загальна фізика. Механіка, молекулярна фізика і термодинаміка, електрика 3.84 MB
  Вступ Фізика є основною наукою про природу. Вона вивчає найбільш загальні властивості і форми руху матерії. Одним із видів руху є механічний рух, під яким розуміють зміну положення тіла в просторі з часом. Механіка Галілея-Ньютона вивчає рух макроск...
4689. Физиология микроорганизмов. Химический состав микробов 530 KB
  Физиология микроорганизмов Микроорганизмам, как и всем живым существам, присущи процессы питания, дыхания, роста и размножения. Однако эти процессы у микробов характеризуются своеобразием и рядом особенностей. Микробы занимают особое место среди дру...
4690. Гюстав Флобер (1821-1880) 118.5 KB
  Гюстав Флобер (1821-1880) Біографія. Флобер народився в Руані (Нормандія) 12 грудня 1821 р. в родині лікаря. Дитинство майбутнього письменника минуло, як він сам згадував, поряд з кімнатою, де робились операції. Цей сумний досвід ...
4691. Соціальна психологія. Конспект лекцій 603 KB
  Лекція 1. Загальна характеристика соціальної психології як галузі психологічних знань 1.1 Предмет соціальної психології 1.2 Місце соціальної психології серед інших наук та структура соціальної психології 1.3 Історія розвитку соціальної психології 1....
4692. Социально психологическая генетика. Методы психогенетики и их разрешающая способность 247 KB
  Методы психогенетики и их разрешающая способность Популяционный метод. Примеры популяционных исследований психологических признаков. Генеалогический метод. Основная схема метода, построение родословных. Проблема проведения различий между генетически...
4693. Медицинская генетика. Учебник 174 KB
  Введение Клиническая генетика одна из фундаментальных наук в современной медицине, без знания которой любой врач, независимо от его специальности, не может обойтись. Знание генетики напрямую связано со здоровьем не только нас самих, но и здоровьем н...
4694. Полевая практика по популяционной генетике 6.47 MB
  Изучение закономерностей модификационной изменчивости. Изучение мутационной изменчивости. Цитоплазматическое наследование. Закон гомологических рядов. Центры происхождения растений. Изучение изменчивости седых пятен у клевера. Изучение...