3132

Планирование многофакторных экспериментов

Контрольная

Информатика, кибернетика и программирование

Введение Исследование является экспериментом, если входные переменные изменяются исследователем в точно учитываемых условиях, позволяя управлять ходом опытов и воссоздавать их результаты каждый раз при повторении с точностью до случайных ошибок. П...

Русский

2012-10-25

207 KB

150 чел.

1 Введение

Исследование является экспериментом, если входные переменные изменяются исследователем в точно учитываемых условиях, позволяя управлять ходом опытов и воссоздавать их результаты каждый раз при повторении с точностью до случайных ошибок.

Планирование и анализ эксперимента представляет собой важную ветвь статистических методов, разработанную для решения разнообразных задач, возникающих перед исследователями. В одном случае необходимо обнаружить и проверить причинную связь между входными переменными (факторами) и выходными переменными (откликами), в другом – отыскать оптимальные условия ведения процесса или сравнить изучаемые объекты и т.д.

Под планированием эксперимента понимается процедура выбора числа опытов и условий их проведения, необходимых для решения поставленной задачи с требуемой точностью. Все переменные, определяющие изучаемый объект, изменяются одновременно по специальным правилам. Результаты эксперимента представляются в виде математической модели, обладающей определенными статистическими свойствами, например минимальной дисперсией оценок параметров модели.

Для экспериментаторов, которые не занимаются планированием многофакторного эксперимента, наиболее привычным методом исследования является однофакторный эксперимент. Он заключается в том, что варьируется один фактор на нескольких уровнях, а все другие факторы поддерживаются постоянными. В этом случае можно получить количественную оценку эффекта только одного фактора.

Влияние других факторов оценить нельзя. Выводы о влиянии изучаемого фактора могут существенно различаться в зависимости от уровня фиксирования прочих факторов. Это часто приводит к ошибочным рекомендациям. Лишь в тех случаях, когда отклик является функцией одного фактора, однофакторный эксперимент вполне закономерен.

Однако на практике приходится иметь дело с многофакторными объектами, где однофакторный эксперимент неэффективен.

В многофакторных планах одновременно варьируется несколько факторов, а не каждый в отдельности.

План должен быть составлен так, чтобы при статистической обработке имелась возможность хорошо проанализировать эксперимент: проверить: существуют ли эффекты изучаемых факторов, определить величину этих эффектов (не увидеть несуществующие и не "проглядеть" действительные эффекты), найти наименьший значимый эффект и т.д. Оценки эффектов факторов можно считать достоверными только тогда, когда ни неоднородность экспериментальных единиц, ни другие неучтенные факторы не в состоянии привести к полученному результату.

В планировании эксперимента сам эксперимент рассматривается как объект исследования и оптимизации. Здесь осуществляется оптимальное управление ведением эксперимента, в зависимости от характера изучаемого объекта и целей исследования обоснованно выбираются тип планирование эксперимента, метод обработки данных. К различным типам эксперимента относятся: экстремальный, отсеивающий, сравнительный, описательный и другие виды.

Планирование многофакторных экспериментов – новый подход к организации и проведению экстремальных исследований сложных систем. Цель планирования эксперимента – извлечение максимума информации при заданных затратах на эксперимент либо минимизация затрат при получении информации, достаточной для решения задач. Планирование эксперимента позволяет соразмерить число опытов поставленной задаче.

2. Расчет полного факторного эксперимента типа 22

В ходе проведения полного факторного эксперимента типа 22, проводимого с целью поиска минимального уровня колебаний мгновенной скорости (, об/мин) шагового фильма (ШД) типа ДШИ-200, при изменении обобщенных параметров привода ШД:

Х1≡kt-безразмерная электромагнитная постоянная времени;

Х2≡µн-относительный момент нагрузки,

получена матрица планирования вида:

1

2

1

5

+1

+1

+1

1.82

1.98

1.900

1.765

2

6

+1

-1

+1

0.97

0.92

0.945

1.080

3

7

+1

+1

-1

1.08

1.02

1.050

1.185

4

8

+1

-1

-1

0.69

0.58

0.635

0.500

С учетом значений нулевого уровня фактора и их интервалов варьирования:

 

 

2.1 Расчет среднего значения




2.2 Расчет коэффициентов регрессии

2.3 Расчет значения модели

  

2.4 Расчет дисперсии


Максимальная дисперсия оказалась в опыте №1

2.5 Расчет дисперсии параметра оптимизации равна


2.6 Дисперсия адекватности и критерий Фишера


Табличное значение критерия Фишера для
f1=1, f2=1 F=164.45. Наше значение не превышает табличного, следовательно модель адекватна.

2.7 Проверка значимости коэффициентов

Для этого найдем дисперсию коэффициента регрессии :


тогда доверительный интервал равен:

где t = 12.7060 – табличное значение критерия Стьюдента при количестве степеней свободы f=1 и p=0.95. Абсолютная величина наших коэффициентов  больше доверительного интервала, поэтому они все значимы.

2.8 Расчет шагов крутого восхождения

С учетом значений нулевого уровня факторов и их интервалов варьирования:

  

 

вектор

Шаги восхождения:

1)      

         

2)      

         

3)      

         

4)       

         

5)      

         

6)      

         

7)      

         

8)      

         

 

Рис. 1.

В результате расчета и построение графика,  показано, что система не вышла за пределы данной области за десять шагов.

Заключение

В результате проведённых опытов, мы получили адекватную линейную модель, которая  имеет вид полинома первой степени. Коэффициенты, которого являются производными целевой функции по соответствующим переменным.


Приложение А

Генератор псевдослучайной последовательности проведения эксперимента:

function t =gen(val,rs)

for j = 1:val

   b(1,j)=cos(j+rs);

end;

for i= 1: val;

   z=0;

   test=b(1,i);

   for j= 1: val

        if (test >=b(1,j))

        z=z+1;

        end;

        ind(1,i)=z;

   end;

end;    

t=ind;


Приложение Б

Расчет параметров модели:

>> a = 8;

b=gen(a,4)

load isx.txt

isx

%Среднее значение y

for i = 1 : 4

   sum=0;

   for j = 6 : 7

       sum = sum + isx (i,j);

       end;

   isx(i,8) = sum / 2;

   end;

isx

%Коэффициенты регресии

b0 = 0;

for i = 1 : 4

   b0 = b0 + isx(i,3)*isx(i,8);

   end;

b0 = b0 / 4

b1 = 0;

for i = 1 : 4

   b1 = b1 + isx(i,4)*isx(i,8);

   end;

b1 = b1 / 4

b2 = 0;

for i = 1 : 4

   b2 = b2 + isx(i,5)*isx(i,8);

   end;

b2 = b2 / 4

%Модель

for i = 1 : 4

   isx (i,9) = b0*isx(i,3) + b1*isx(i,4) + b2*isx(i,5);

   end;

isx

%Дисперсия

for i = 1 : 4

    des(i,1)=((isx(i,6)-isx(i,8))*(isx(i,6)-isx(i,8))+(isx(i,7)-isx(i,8))*(isx(i,7)-isx(i,8)))/2 ;

    end;

 des

%Дисперсия параметра оптимизации

 s = 0;

 for i = 1 : 4

    s = s + des(i,1);

    end;

sy = s    

s = s / 4

%Критерий Фишера

sa = 0;

for i = 1 : 4

    sa = sa + (isx(i,8)-isx(i,9))*(isx(i,8)-isx(i,9));

    end;

 sa 

 F = sa / s 

%Проверка значимости коэффициентов

 sb = sy / 4;

 dB = 12.7060 * sb

%Шаги крутого восхождения

 for i = 1 : 10

    x1(1,i) = 0.150 - b1 * 0.1 * i;

    x2(1,i) = 0.35 - b2 * 0.1 * i;

end;

x1

x2

plot(x1,x2)

b =

    5     8     6     3     1     2     4     7

isx =

 Columns 1 through 9

   1.0000    5.0000    1.0000    1.0000    1.0000    1.8200    1.9800   1.9000    1.7650

   2.0000    6.0000    1.0000   -1.0000    1.0000    0.9700    0.9200   0.9450    1.0800

   3.0000    7.0000    1.0000    1.0000   -1.0000    1.0800    1.0200   1.0500    1.1850

   4.0000    8.0000    1.0000   -1.0000   -1.0000    0.6900    0.5800   0.6350    0.5000

isx =

 Columns 1 through 9

   1.0000    5.0000    1.0000    1.0000    1.0000    1.8200    1.9800   1.9000    1.7650

   2.0000    6.0000    1.0000   -1.0000    1.0000    0.9700    0.9200   0.9450    1.0800

   3.0000    7.0000    1.0000    1.0000   -1.0000    1.0800    1.0200   1.0500    1.1850

   4.0000    8.0000    1.0000   -1.0000   -1.0000    0.6900    0.5800   0.6350    0.5000

  

b0 = 1.1325

b1 = 0.3425

b2 = 0.2900

isx =

 Columns 1 through 9

   1.0000    5.0000    1.0000    1.0000    1.0000    1.8200    1.9800   1.9000    1.7650

   2.0000    6.0000    1.0000   -1.0000    1.0000    0.9700    0.9200   0.9450    1.0800

   3.0000    7.0000    1.0000    1.0000   -1.0000    1.0800    1.0200   1.0500    1.1850

   4.0000    8.0000    1.0000   -1.0000   -1.0000    0.6900    0.5800   0.6350    0.5000

des =

   0.0064

   0.0006

   0.0009

   0.0030

sy =    0.0109

s =   0.0027

sa =   0.0729

F =  26.6301

dB =  0.0348

x1 =

 Columns 1 through 7

   0.1157    0.0815    0.0473    0.0130   -0.0212   -0.0555   -0.0897

 Columns 8 through 10

  -0.1240   -0.1582   -0.1925

x2 =

 Columns 1 through 7

   0.3210    0.2920    0.2630    0.2340    0.2050    0.1760    0.1470

 Columns 8 through 10

   0.1180    0.0890    0.0600


 

А также другие работы, которые могут Вас заинтересовать

52075. Плотность вещества 59.5 KB
  Ребята почему тела равных объемов имеют разные массы Чтобы решить эту проблему изучим новую физическую величину плотность вещества. сегодня на уроке с новой характеристикой вещества плотностью так какая тема сегодняшнего урока Тема нашего урока Плотность вещества II Формирование новых умений и навыков. Молодцы Эту величину назвали плотность вещества.
52077. Дзеяслоў 71 KB
  Узор: Падарожнік ідзе крочыць. Падарожнік ідзе Шмат дарог ён прайшоў І машына ідзе З поўным кузавам дроў. А дарога ідзе То праз лес то праз поле. На дарогу ж ідзе І гадзіна і болей.
52079. АБЕТКА 2.61 MB
  Літеру И і ту беруть з собою хоч вона теж не починає жодного слова а про мене ніхто навіть не памятає голосив мякий знак. Ребенкова Фонематичне сприймання Лікар оглядає хворого: А а а Як людина висловлює захоплення Ах Сходинки Буква наскрізь мова дошка людина стружка подружка Рак Мати Радіо Лантух Майстер Прочитай слова ідучи від літери А вгору вниз вліво вправо Т  О  Р  К  О  Т  В  А  Й  С  Т    Р К Ь Р    В Л А   А  Р  Е Де стоїть літера На початку слова: акварель абетка автобус...
52080. Сценарій свята: «Абетка» 43 KB
  Ведучий 1 Good morning boys nd girls Good morning der guests We re gld to see you t our âBC prtyâ. Ведучий 2 Добридень дівчата та хлопята Добридень гості дорогі Ми дуже раді бачити Вас на нашому святі Ведучий 1 Tody well spek bout English ply mny interesting gmes sing songs nd remember wht we hve lerned t our lessons. Ведучий 2 Сьогодні ми поговоримо про англійську мову Пограємо в ігри поспіваємо та пригадаємо все що вчили на наших уроках....
52081. Свято англійської абетки 58.5 KB
  You will recite rhymes bout letters guess the riddles ply the gmes nd do mny other things. Ee Ff E is for egg Flowers here flowers there It is yellow nd white Flowers growing everywhere. It is so sweet...
52082. Сказка как вид народной прозы. Высокий нравственный облик волшебницы Василисы Премудрой 46.5 KB
  Цель: познакомить учащихся с ТНР с жанровыми особенностями фольклорной сказки на примере волшебной сказки Царевна-лягушка. Задачи: Образовательные: 1 закрепить представления учащихся о сказке как жанре фольклора и ее видах; 2 дать представления учащимся о сказителях и собирателях сказки; 3 учить анализировать фрагменты из сказки Царевна-лягушка; 4 научить сопоставлять фрагменты сказки; 5 научить школьников выделять систему образов волшебной сказки; 6 дать представления учащимся об особенностях волшебной сказки: связь с...
52083. Абсолютна величина в математичних задачах 1.11 MB
  Для успішного розвязання цих завдань потрібно не стільки мати гарну інтуїцію і неабиякі здібності скільки мати спеціальну підготовку. Вона полягає в знайомстві ретельному вивченні й застосуванні методів розвязування таких задач. Розвязування задач з модулями приводить учнів до необхідності використання класифікації й освоєння навичок дослідження та готують до розвязання важких задач з параметрами. У цій роботі йдеться про методи розвязування раціональних рівнянь і нерівностей що містять знак абсолютної величини.