3142

Металлургия стали

Конспект

Производство и промышленные технологии

Курс лекций по дисциплине «Металлургия стали» предназначен для самостоятельного изучения и закрепления теоретических знаний студентами на начальном этапе обучения по специальностям металлургического направления. Подробно изложены все основные раздел...

Русский

2012-10-25

1.75 MB

151 чел.

Курс лекций по дисциплине «Металлургия стали» предназначен для самостоятельного изучения и закрепления теоретических знаний студентами на начальном этапе обучения по специальностям металлургического направления.

Подробно изложены все основные разделы дисциплины «Металлургия стали» в соответствии с указаниями государственного образовательного стандарта высшего профессионального образования по направлению 080500 «Менеджмент».


1 Основные понятия и определения

Сталью называется сплав железа с углеродом, в котором углерод содержится от сотых долей до 2 %. Помимо этого, в стали содержатся также марганец, кремний, сера, фосфор и другие химические элементы.

Металлургией стали называется наука о способах получения стали с заданными свойствами в количествах, имеющих промышленное значение.

Сталь является основным конструкционным материалом, поскольку:

  1.  обладают такими полезными свойствами, как способность к упругим и пластическим деформациям, высокая прочность, электрическая проводимость, теплопроводность и другие особенности.
  2.  Железо, являющееся основой стали имеет значительное распространение в земной коре (5,9 %) в виде железосодержащих минералов, называемых рудами и сравнительно легко извлекается из руд.

Таким образом, можно сказать, что на ближайший обозримый период времени сталь останется основным конструкционным материалом.

1.1 Основные этапы развития сталеплавильного производства

Металлургия стали как производство возникла около 3,5 тыс. лет назад в северной Африке (Египет, Сирия). В процессе развития сталеплавильнго производства основные агрегаты для выплавки стали и технология производства претерпели значительные изменения: прямое получение железа из руды в сыродутных горнах с получением кричного железа, получение стали окислительным плавлением чугуна на поду специальной пудлинговой печи (от англ. puddle месить, перемешивать), тигельный процесс, конвертерный и мартеновский процессы, электрометаллургия стали, переплавные процессы (вакуумно-индукционный переплав (ВИП), вакуумно-дуговой (ВДП), электрошлаковый (ЭШП), электронно-лучевой (ЭЛП), плазменно-дуговой ПДП и др.), внепечная обработка стали.

В настоящее время мировое производство стали достигает примерно 750 млн. т. основными способами производства являются кислородно-конвертерный ( 50%), электросталеплавильный (~20%) и мартеновский (<30%); ~ 2% стали производят в электропечах с использованием материалов, полученных на установках прямого восстановления.

При мартеновском, конвертерном и электродуговом способах производства стали получение металла осуществляется в две стадии: 1) восстановление в доменных печах железа из руды, т.е. получение чугуна; 2) окисление в сталеплавильных агрегатах углерода, кремния, марганца, фосфора, удаление серы, т.е. получение из чугуна стали требуемого состава.

1.2 Классификация сталей

Полученные тем или иным способом стали чрезвычайно разнообразны по своим свойствам и составу. Их классифицируют по способу производства, назначению, качеству, химическому составу, характеру застывания в изложницах и строению получающегося слитка.

По способу производства сталь может быть тигельной, кислой и основной мартеновской, бессемеровской, томасовской, конвертерной, электросталью, электрошлакового переплава и полученной другими способами.

По назначению можно выделить следующие основные группы сталей:

1. Конструкционная сталь, которую применяют при изготовлении различных металлоконструкций (для строительства здании, мостов, различных машин и т. п.).

2. Топочная и котельная сталь — низкоуглеродистая сталь, применяемая для изготовления паровых котлов и топок.

3. Сталь для железнодорожного транспорта — рельсовая мартеновская и конвертерная сталь, осевая сталь, сталь для бандажей железнодорожных колес.

4. Подшипниковая сталь служит материалом для изготовления шариковых и роликовых подшипников.

5. Инструментальная сталь применяется для изготовления различных инструментов, резцов, валков прокатных станов, деталей кузнечного и штамповочного оборудования.

Кроме указанных, имеется еще ряд групп сталей, назначение которых видно из самого их названия: рессорно-пружинные, электротехнические, трансформаторные, динамные, нержавеющие, орудийные, снарядные, броневые, трубные стали и др.

По качеству стали обычно делят на следующие группы: сталь обыкновенного качества, качественную и высококачественную. Различия между этими группами заключаются в допускаемом содержании вредных примесей (в первую очередь серы и фосфора), а также в особых требованиях по содержанию неметаллических включений. Например, в сталях обыкновенного качества содержание серы и фосфора не должно превышать 0,055—0,060, в качественных сталях — не более 0,040—0,045, в высококачественных — не более 0,020— 0,030 % (в некоторых случаях содержание серы и фосфора допускается в очень низких пределах: 0,010 и даже 0,005 %).

По химическому составу различают:

1) сталь с низким содержанием примесей, или так называемое технически чистое железо, так как суммарное содержание других элементов составляет всего лишь около 0,1%;

2) Углеродистая сталь сталь, не содержащая легирующих компонентов (кроме углерода). В зависимости от назначения эта сталь подразделяется на  низкоуглеродистую (0.25 % С); среднеуглеродистую (0,25- 0,60 % С); высокоуглеродистую (0,6-2,0 % С).

3) Легированная сталь — сталь, содержащая, помимо углерода, другие легирующие компоненты, которые в свою очередь делят на низколегированные стали (до 10 % ЛЭ); средне (10-20% ЛЭ) и высоколегированные стали (более 20%)..

Для легированных сталей применяются следующие буквенные обозначения элементов: углерод – У; марганец — Г; кремний — С; никель — Н; вольфрам — В; молибден — М; хром — X; ванадий — Ф; алюминий — Ю; титан — Т; медь — Д;

В обозначении легированных марок стали применяют в определенных сочетаниях цифры и буквы. Принцип маркировки стали: цифры до букв означают содержание углерода в сотых долях процента (если менее 0,08 %, то 0), буквы — наименование легирующего элемента, а цифра после букв—содержание легирующего элемента в процентах (если оно превышает 1,5 %).

Марки конструкционной стали обыкновенного качества обозначают следующим образом: Ст0, Ст1, Ст2 и т.д. Обозначениями качественных конструкционных сталей служат: 10, 20, 45 и т. д. Качественная углеродистая сталь обозначается У7, У8, ..., У12, где буква У — углеродистая, а цифра — содержание углерода в десятых долях процента.

Стали специального назначения обозначаются следующим образом: А - автоматная сталь, Р - быстрорежущая инструментальная сталь, Ш - подшипниковые стали, Э - электротехнические стали, Е - для постоянных магнитов,  ЭП - экспериментальные стали.

В зависимости от микроструктуры стали бывают перлитные, мартенситные, аустенитные или ферритные.

По  степени  раскисленности: спокойные, кипящие и полуспокойные. Поведение металла в изложницах зависит от степени его раскисленности — чем полнее раскислена сталь (удален кислород), тем спокойнее кристаллизуется слиток (раскислением стали называют процесс удаления из металла растворенного в нем кислорода). Так, например, в результате обильного газовыделения кипящая сталь при кристаллизации в изложнице кипит (отсюда название стали). Наоборот, спокойная сталь кристаллизуется без видимых эффектов, спокойно.

1.3 Сталеплавильные шлаки

Шлак, представляющий собой сплав оксидов, сульфидов, нитридов, фосфидов, карбидов и др. соединений и является неизбежным побочным продуктом любого современного способа производства стали в открытых агрегатах.

Образование шлака обусловлено:

  1.  во-первых, с обязательным окислением элементов металлической фазы во время плавки и образованием при этом различных нелетучих (шлакообразующих) оксидов, имеющих меньшую плотность, чем металл, и собирающихся на поверхности металла;
  2.  во-вторых, с неизбежным разрушением футеровки в условиях высоких температур под действием оксидов, образующихся в результате окисления компонентов металлической фазы.
  3.  в-третьих, попаданием в ванну оксидов извне с неметаллическими шихтовыми материалами (флюсов и твердых окислителей), загрязнениями (мусора) лома и миксерного или доменного шлака.

Источники образования шлака

1. Продукты окисления примесей чугуна и лома — кремния, марганца, фосфора, серы, хрома и других элементов (SiO2, MnO, Р2О5, FeS, MnS, Сr2О3 и др.).

2. Продукты разрушения футеровки агрегата — при разъедании основной футеровки (доломита, магнезита) в шлак переходят СаО, MgO, при разъедании кислой (динас) — SiO2.

3. Загрязнения, внесенные шихтой (песок, глина, миксерный шлак и т.п.), —SiO2, Аl2О3, MnS и т.п.

4. Ржавчина, покрывающая заваливаемый в сталеплавильные агрегаты лом, — оксиды железа.

5. Добавочные материалы и окислители (известняк, известь, боксит, плавиковый шпат, железная и марганцевая руды и т.п.) — СаО, Аl2О3, SiO2, FeO, Fe2О3, MnO, CaF2 и т. п.

Роль шлаков противоречива, поскольку она может быть как полезной (положительной), так и вредной (отрицательной).

Положительное значение шлаков состоит в способности поглощать фосфор (дефосфорация) и серу (десульфурация) из металла. Такими свойствами обладают только основные шлаки, в которых преобладает содержание основных оксидов, прежде всего СаО.

В подовых процессах, т. е. в процессах, осуществляемых в мартеновских, двухванных и электродуговых печах, положительная роль шлаков выражается также в защите металла от поступающих из атмосферы печи вредных примесей, главным образом газов.

Отрицательное значение шлаков в основном выражается в следующем: 1) разрушающем действии на футеровку агрегата; 2) увеличении потери (угара) полезных примесей в процессе окислительного рафинирования, а также раскисления и легирования; 3) увеличении потери железа в виде оксидов и корольков, содержащихся в шлаке. Указанные отрицательные действия шлаков на ход и результаты плавки в той или иной степени проявляются в любых сталеплавильных процессах. Установление оптимального шлакового режима плавки должно означать обеспечение возможно большего проявления положительной их роли и меньшего - отрицательной.

Состав шлаков

Строение шлаков и их основные физико-химические свойства определяются содержанием в них различных оксидов, которое условно принято называть химическим составом шлака.

Шлаки, в которых преобладают основные окислы (CaO, MgO, MnO, FeO), называют основными шлаками, а шлаки, в которых преобладают кислотные окислы (SiO2, P2О5) кислыми шлаками. В зависимости от характера шлаков и процессы называют основными или кислыми (например, основной мартеновский процесс, кислый мартеновский процесс). Если футеровка выполнена из кислого (кремнеземистого) материала, то шлак должен быть также кислым, т. е. главным компонентом должен быть SiO2, иначе разрушающее действие шлака на футеровку может оказаться очень значительным. В агрегатах, имеющих основную (магнезитовую или доломитовую) футеровку, плавку можно вести только под основными шлаками, главным компонентом которых является CaO.

Химические свойства шлаков:

1. Основность шлака

Существует множество показателей характеризующих основность шлака, но любая из них прежде всего должна позволять оценить фосфоро- и серопоглотительную способность шлака.

При переделе малофосфористых чугунов за показатель основности шлака принимают отношение: В= (CaO)/(SiO2), при переделе высокофосфористых чугунов - В = (CaO)/(SiO2 + P2О5).

Шлаки, в которых отношение (CaO/SiO2) < 1,6 называют низкоосновными; у шлаков средней основности CaO/SiO2 == 1,6—2,5; у высокоосновных шлаков (CaO/SiO2) > 2,5.

Кислые шлаки состоят главным образом из кислотного окисла SiО2 и некоторого количества таких основных окислов, как FeO и MnO. Составы кислых шлаков характеризуются степенью их кислотности (или просто «кислотностью»), выражаемой обычно отношением SiО2/(FeO + MnO).

2. Окисленность шлака - это способность его оказывать окислительное воздействие на металлическую фазу, передавая кислород в эту фазу.

В общем случае окислительная способность шлака находится в сложной зависимости от содержания в нем оксидов железа (FeO), его основности (В), концентрации углерода в металле ([С]) и температуры ванны. Окислительная способность шлака возрастает по мере повышения содержания оксидов железа в нем, концентрации углерода в металле и температуры и снижения основности шлака до 1,7-1,8.

В качестве меры окисленности шлака в производственных условиях обычно принимают или содержание (в %) в шлаке FeO, или содержащуюся в нем сумму FeO + Fе2О3, или содержание в шлаке железа.

Физические свойства шлаков определяют поведение шлаков в процессе плавки

1. Температура плавления шлаков

Температура плавления шлаков (шлаки имеют многокомпонентный состав и плавятся в интервале температур, т.е. имеют начало и конец плавления. Здесь и в дальнейшем имеется в виду температура конца плавления шлаков) является их основной физической характеристикой, определяющей другие важные физико-химические свойства. Это связано с тем, что в любом сталеплавильном агрегате в каждый период плавки температура металла и шлака изменяется в узких пределах, поэтому перегрев шлаков выше температуры плавления в основном определяется температурой плавления. Степень перегрева шлака определяет поведение шлака, его физические свойства (вязкость, электрическую проводимость) и химическую активность (рафинирующее действие на металл, поглощение газов из газовой фазы и т.д.). На температуру плавления шлака может влиять любой его компонент. Однако, как показывают исследования, для обычных окислительных шлаков первостепенное значение имеет изменение содержания SiO2 (см. рисунок 1).

Наиболее легкоплавкие шлаки (tпл = 1200-1300°С) содержат 30-40% SiO2. Как снижение, так и увеличение содержания SiO2 в шлаке выше указанных пределов приводит к повышению температуры плавления.

Содержание SiO2 равное 30-40%, обычно наблюдается в начале плавки как в основных, так и в кислых процессах. По ходу плавки в основных процессах содержание SiO2 снижается, а в кислых процессах повышается, поэтому температура плавления шлаков по ходу плавки обычно повышается.

Обычно для разжижения основных шлаков используют добавки боксита (основные составляющие Al2O3, SiO2, Fе2О3), плавикового шпата (CaF2), боя шамотного кирпича (SiO2, Al2O3), в некоторых случаях песка (SiO2).

.

2. Вязкость шлаков

Вязкость шлака является важнейшим из свойств. Повышенная вязкость шлака затрудняет тепло- и массоперенос в шлаке, вызывает замедление всех процессов нагрева и рафинирования металла, приводит к излишнему угару раскисляющих и легирующих присадок, уменьшает выход годной стали. Вязкость шлака зависит от его температуры и состава.

Зависимость вязкости шлаков периода плавления в основной мартеновской печи от температуры приведена на рисунке 2, из которого видно, что в области умеренно низких температур начала плавки (вблизи температуры плавления) вязкость шлаков высока и возрастает при увеличении их основности. Значения вязкости нормальных шлаков по ходу плавки обычно находятся в пределах 0,1-0,3.

Компонентами шлака, резко повышающими его вязкость, прежде всего являются МgО (> 10-12%) и Сг2О3 (>5-6%); эти компоненты при содержаниях выше указанных пределов обогащают шлак мелкодисперсными частицами.

Вязкость основных шлаков существенно снижается при введении 2-5% CaF2 5-7% Al2O3, 5-7% Na2O или К2О.

3. Вспенивание шлака

Вспенивание шлака вызывают мелкие пузыри СО, образующиеся в результате окисления углерода металла и остающиеся в шлаке ввиду того, что архимедова (подъемная) сила из-за большой удельной поверхности оказывается недостаточной для преодоления сопротивления (силы трения) шлакового расплава.

Некоторое, не чрезмерное вспенивание шлака в кислородных конвертерах с верхней подачей дутья играет положительную роль - повышается и стабилизируется усвоение кислорода ванной, создаются препятствия выпуску из конвертера капель металла и поглощению азота из подсасываемого через горловину воздуха. Чрезмерное вспенивание приводит к выбросам значительных объемов шлака из любого агрегата, что недопустимо. В мартеновских печах даже умеренное вспенивание, не приводящее к выбросам шлака, нежелательно, поскольку пенистый шлак, обладая низкой теплопроводностью, ухудшает теплопередачу от факела к металлу, что вызывает удлинение плавки и повышение износа футеровки, особенно свода печи, поскольку значительная часть неусвоенного металлом тепла поглощается футеровкой, а это приводит к ее перегреву.

Причиной чрезмерного вспенивания шлака могут быть повышенное содержание в шлаке SiO2 и Р2О5 образующие поверхностно-активные анионы SiO44- и РО43-, которые повышают устойчивость пены. Аналогичное действие оказывает наличие в шлаке очень мелких твердых частиц, которые повышают механическую прочность шлаковых пленок (служат "каркасом").

Для снижения склонности шлака к чрезмерному вспениванию из-за наличия в нем очень мелких твердых частиц необходимо повышение температуры, которое обеспечивает растворение твердых частиц в шлаке. Если же чрезмерное вспенивание вызывается повышенным содержанием в шлаке SiO2 и Р2О5, то необходимо повысить основность шлака присадкой в ванну извести, еще лучше присадка CaF2, и оксидов щелочных металлов.

Общие принципы установления оптимального шлакового режима плавки

Основными параметрами, определяющими шлаковый режим плавки, являются основность и количество шлака. Оптимальный шлаковый режим достигается одновременным изменением и химического состава (основности), и количества шлака. Если по условиям ведения плавки (высокое качество исходного сырья, умеренные требования к качеству стали и т.п.) нет необходимости в специальных мерах для удаления из металла серы или фосфора, то основность шлака должна обеспечивать предотвращение чрезмерного разрушающего действия шлака на футеровку агрегата. Для выполнения этого требования достаточно иметь основность конечного шлака 2,2-2,4. Если по ходу плавки требуется принятие специальных мер для удаления серы и фосфора, то основность шлака должна обеспечивать максимальное поглощение шлаком этих примесей. Этому требованию соответствуют конечные шлаки с основностью 2,7-3,3 в мартеновском процессе и 3,0—4,0 в кислородно-конвертерном процессе.

Если за счет повышения основности шлака не удается провести рафинирование металла, прибегают к увеличению его количества, путем «скачивания» отработанного шлака и «наведения» нового шлака. Поскольку наведение дополнительного шлака удлиняет плавку и ведет к дополнительным потерям металла, стараются вести процесс в одношлаковом режиме.

2 Основные реакции сталеплавильных процессов

Поскольку сталь получают обычно из чугуна и лома в результате окисления и удаления содержащихся в них примесей (кремния, марганца, фосфора и др.), особое значение в сталеплавильной практике имеют реакции окисления. Кислород для протекания этих реакций поступает или из атмосферы, или из железной руды, или из других окислителей, или при продувке ванны газообразным кислородом.

2.1 Окисление углерода

Углерод в стали - это ее самая распространенная полезная примесь. Содержание углерода как полезной примеси в стали обычно изменяется от 0,05-0,10 до 1,0-1,2%.

Углерод в твердом железе способен образовать пересыщенный раствор, т.е. оставаться в растворе в количествах, значительно превышающих растворимость. В результате атомы углерода занимают некоторые узлы в кристаллической решетке железа (феррита), что вызывает ее искажение и приводит к возникновению в ней напряжений, способствующих повышению прочности и твердости железа.

Углерод, содержащийся в исходной металлошихте, в основном в чугуне, оказывает решающее положительное влияние на ход и результаты окислительного рафинирования металла в любом агрегате. Это связано прежде всего с тем, что в течение всего этого периода углерод окисляется.

Во-первых, при окислении углерода выделяются газы СО и СО2. Это газовыделение обеспечивает интенсивное перемешивание ванны (металла и шлака), без которого сталеплавильные процессы в существующих вариантах нереализуемы. Кроме того, пузыри СО, проходя через жидкий металл, способствуют удалению из него газов и неметаллических включений.

Во-вторых, процесс окисления углерода газообразным кислородом протекает с выделением тепла, которое используется для нагрева ванны.

В-третьих, реакция окисления углерода [C]+(FeO)={CO}+[Fe] защищает железо от чрезмерного окисления во время его окислительного рафинирования, т.е. способствует уменьшению неизбежных потерь железа из-за его окисления.

В-четвертых, содержание углерода в металле и непрерывное его окисление являются основными факторами, определяющими содержание кислорода в металле, от которого зависит содержание оксидных неметаллических включений в готовой стали, т.е. ее качество.

Поведение углерода

Окисление углерода в сталеплавильных процессах в основном (на 85-90 %) протекает до {СО}. Сопутствующая ей реакция окисления углерода с образованием СО2 имеет второстепенное значение. Содержание CO2 не превышает 10-15 %.

Возможные реакции окисления углерода, растворенного в металле:

  1.  [С] + 1/2О2 = СОгаз; ΔG° = -152570 - 33,8Т; - идет с выделением тепла.
  2.  [С ] + (FeO) = Fe + СОгаз; ΔG° = +85 373 – 83,8Т; - протекает с поглощением тепла.
  3.  [С] + [О] = СОгаз; ΔG° = —35 630—31 Т; - с выделением тепла.

Если проанализировать изменение величины ΔG° при изменении температуры, то окажется, что во всех случаях значение ΔG° с повышением температуры уменьшается, т. е. ее повышение благоприятствует протеканию реакции окисления углерода.

Константа равновесия реакции [С] + [О] = {СО} в общем случае определяется выражением Кс = Pco/(a[c]a[o]). При концентрациях углерода до 1%, а кислорода до 0,08% коэффициенты их активности примерно равны единице, поэтому Кс=Рсо/([С]·[О]).

Поскольку значение теплового эффекта реакции мало, им можно пренебречь. Тогда для любой температуры Рсо/([C]-[О])=const.

В конце сталеплавильного процесса при температуре 1600 0С для открытых агрегатов (Рсо= 1 кг/см2), можно считать, что Кс = 402, тогда

[C]∙[О]=Рсо/Кс=Рсо/402=0,0025Рсо=0,0025.

Это означает, что в рассматриваемых условиях равновесное остаточное содержание углерода в металле зависит только от концентрации кислорода, причем чтобы получить [С]min, необходимо обеспечить [О]max.

Теоретически возможное максимальное содержание кислорода (см. рисунок 3) при температурах конца сталеплавильных процессов [О]= 0,20-0,25%. Приняв среднее значение [О]= 0,23% и подставив его в уравнение, получим [С]min= 0,0025/0,23 = 0,01%, т. е. в открытом сталеплавильном агрегате невозможно получить содержание углерода < 0,01%.

В реальной сталеплавильной ванне в конце плавки очень трудно получить шлак, содержащий > 50% оксидов железа, поэтому максимальное содержание кислорода в металле составляет 0,10-0,12% и минимальное остаточное содержание углерода не бывает меньше 0,02%. Получение такого низкого содержания углерода в металле является нежелательным, так как приводит к резкому снижению выхода годного ввиду чрезмерного окисления железа и повышенному износу футеровки агрегата.

В современной практике производство стали с содержанием < 0,02% С получает большое развитие. В этих случаях в открытых агрегатах обычно достигают остаточного содержания углерода 0,025-0,040%. Дальнейшее снижение содержания углерода в металле достигают обработкой жидкой стали вакуумом и нейтральным газом.

Общие принципы достижения заданного содержания углерода в готовой стали.

  1.  Неизбежное непрерывное окисление этой примеси в течение всего периода окислительного рафинирования.
  2.  Для достижения заданного содержания углерода в готовом металле необходимо иметь определенный запас углерода в исходной шихте (превышение исходного содержания над конечным) и рационально расходовать этот запас в период окислительного рафинирования.
  3.  Плавка должна быть проведена так, чтобы имеющийся запас углерода был израсходован точно в течение того времени, которое требуется для решения других задач, кроме окисления углерода: нагрева, дефосфорации и десульфурации металла и т.п.

Основы синхронизации процессов обезуглероживания и нагрева металла

При управлении плавкой важно не просто окисление углерода и получение заданного содержания его в конечном металле, но и проведение этого процесса синхронно с процессом нагрева ванны.

В идеальных условиях, когда ванна не обменивается теплом с окружающей средой и в ней не протекают никакие другие процессы, кроме окисления углерода, относительное изменение температуры ванны при окислении углерода Δt[c] можно определить по формуле

Δt[c] =Qt/(100Cм+gшлCшл),

где Qt - тепловой эффект реакции окисления углерода при данных условиях, кДж/кг;

gшл - количество шлака, кг/100кг металла;

С - удельные теплоемкости металла и шлака, Дж/(кг К).

Поскольку См=0,84 кДж/(кг-К) и Сшл= 2,09 кДж/(кг-К), а количество шлака обычно составляет 10-15%, то уравнение примет вид: Δt[c] =0,009Qt.

Это означает, что синхронизация процессов обезуглероживания и нагрева металла в идеальных условиях возможна лишь изменением теплового эффекта реакции окисления углерода.

Величина и знак теплового эффекта процесса окисления углерода могут изменяться в зависимости от источника кислорода. Основными источниками кислорода для окисления углерода являются: холодное дутье (кислородное или воздушное), оксиды железа твердых окислителей (железной руды, агломерата, окатышей, окалины и т.п.), горячие печные газы:

Qt, кДж/кг [С]              Δt[c] C/%[C]

Холодное дутье:

воздушное ....…………. +4450                            +40

кислородное ..... ……….+12500                         +115

Нагретая атмосфера печи . . . 15000                  +135

Холодный твердый окислитель –20000             -180

Окисление углерода газообразным кислородом дутья или печных газов происходит с выделением тепла, при этом чем выше температура нагрева кислорода, тем больше тепловой эффект реакции. Окисление углерода кислородом твердых окислителей является резко эндотермическим процессом

В реальных сталеплавильных процессах величина Δt[c] существенно может отличаться от приведенных выше значений Δt[c] no ряду причин: происходит потеря тепла в окружающую ванну среду (нагрев футеровки, окружающего воздуха и т.п.), возможно протекание в ванне других экзотермических и эндотермических процессов, кроме окисления углерода.

2.2 Окисление и восстановление кремния

Кремний при производстве стали используется в качестве раскислителя и легирующего элемента. Сталь, легированная кремнием, обладает более высокими значениями предела текучести, упругости, ударного сопротивления, хорошей прокаливаемостью, жароупорностью, способностью в закаленном состоянии сохранять твердость при относительно высоких температурах и др.

Кремний, содержащийся в металлической шихте, во время плавки окисляется и теряется практически полностью. На ход плавки наличие кремния в шихте как правило, влияет положительно:

  1.  Это выражается в улучшении теплового баланса плавки, поскольку среди обычных примесей металлической шихты кремний окисляется с выделением наибольшего количества тепла.
  2.  Кремнезем, получающийся в результате окисления кремния в ванне, активнее вносимого в готовом виде и ускоряет процесс формирования шлака.

Однако кремнезем, образующийся при окислении кремния металла, оказывает разрушающее действие на основную футеровку. Кроме того, при очень высоком содержании кремния образуется большое количество шлака, которое не всегда является желательным, поэтому обычно устанавливаются пределы содержания кремния в чугуне.

Кремний является обязательной примесью чугуна и в том или ином количестве содержится в ломе. Обычно содержание кремния в металлической шихте довольно высокое (0,5-1,0%).

Растворенный в металле кремний может окисляться кислородом:

а) содержащимся в газовой фазе [Si ] + О2 газ = (SiO2); ΔG = -775670 + 198Т, Дж/моль;

б) содержащимся в окислах железа шлака [Si] + 2 (FeO) == (SiO2) + 2Fe; ΔG° = -300 000+98Т;

в) растворенным в металле [Si] + 2 [О] = SiO2; ΔG°  == -541 840 + 203Т.

Все эти реакции сопровождаются выделением очень большого количества тепла. Знак «плюс» перед энтропийными членами в уравнениях свободной энергии свидетельствует о том, что при повышении температуры могут создаваться благоприятные условия для восстановления кремния.

Полнота протекания реакции окисления кремния зависит от типа процесса, точнее, характера шлака, под которым проводится плавка.

В основных процессах кремнезем образует в шлаке прочные соединения: в начале плавки силикаты железа 2FeOSiO2 и кальция CaOSiO2, в дальнейшем двухкальцевый силикат кальция 2CaOSiO2 по реакции (SiO2) + 2(СаО) = 2СаО∙SiO2. Благодаря протеканию этой реакции активность SiO2 в шлаке становится очень низкой даже при высокой его концентрации и кремний в основных процессах окисляется практически полностью еще в начале плавки, а по ходу плавки не восстанавливается, независимо от присутствия углерода и других обычных примесей чугуна и изменения температуры ванны.

В кислых процессах активность SiO2 в шлаке во много раз выше, чем в основных процессах, поэтому с повышением температуры ванны к концу плавки происходит восстановление кремния из шлака по реакции

[Si] + 2 (FeO) == (SiO2) + 2Fe,

в результате чегоостаточное содержание кремния в металле может достигать 0,3-0,4 %. Восстановителем кремния в кислых процессах может также являться углерод.

Обеспечение заданного содержания кремния в готовой стали

Как было показано выше, в основных процессах, имеющих в настоящее время решающее значение в производстве стали, остаточное содержание кремния в металле в конце окислительного рафинирования ничтожно мало (следы), поэтому кремний как полезная примесь в необходимом количестве вводится в металл после окончания окислительного рафинирования. Для этой цели обычно используют различные железокремнистые сплавы, называемые ферросилицием.

2.3 Окисление и восстановление марганца

Марганец в сталеплавильных процессах может образовывать различные химические соединения: наиболее важными из которых являются MnO, MnS и Мn3С. Марганец в готовой стали в большинстве случаев является полезной примесью, служащей для раскисления и легирования.

Марганец как раскислитель в количестве 0,25-0,50% содержится в кипящей, полуспокойной и спокойной углеродистой стали.

Основное положительное влияние марганца на свойства стали состоит в уменьшении вредного влияния серы за счет связывания ее в сульфид MnS, который при кристаллизации металла выделяется в виде твердых, случайно расположенных включений, приносящих во много раз меньше вреда, чем FeS. Для выделения серы в виде менее вредных твердых включений необходимо иметь в стали следующее отношение содержания марганца и серы: [Mn]/[S]≥20-22.

Марганец как легирующий элемент.

Марганец резко уменьшает критическую скорость закалки, поэтому марганцовистая сталь прокаливается значительно глубже, чем простая углеродистая. Растворяясь в феррите, марганец повышает прочность стали, но несколько снижает пластичность стали (относительное удлинение и ударную вязкость). Марганец также повышает износостойкость и упругость стали.

Поведение марганца в сталеплавильных ваннах

Марганец вносится в сталеплавильную ванну в основном с чугуном и ломом. В зависимости от содержания марганца в чугуне и ломе и их соотношения содержание марганца в исходной шихте изменяется в широких пределах: от 0,3-0,5 до 1,0-1,5% и более.

Марганец, растворенный в металле, окисляется кислородом;

а) содержащимся в газовой фазе:[Mn] + О2 газ = (МпО); ΔG° = -361 380 + 106Т;

б) содержащимся в окислах железа шлака: [Мп] + (FeO) = (МпО) + Fe; ΔG° = —124 000 + 56,4Т;

в) растворенным в металле: [Мп] + [О] = (МпО); ΔG°  = -245 000 + 109Т;

Возрастание величины ΔG° по мере повышения температуры свидетельствует о возможности протекания при высоких температурах - обратного процесса — восстановления марганца из оксида железом: (МnО) + Fe =n] + (FeO), а также углеродом и  кремнием: (МnО) + [C] = [Мn] + СОгаз; 2 (МnО) + [Si] = 2 [Mn] + SiO2.

Полнота протекания реакции окисления марганца зависит от характера шлака, под которым проводится плавка, окисленности шлака, и температурного уровня процессса.

В начале плавки марганец интенсивно окисляется до достижения равновесия реакции

nО) + Fe =n] + (FeO)

После достижения равновесия содержание марганца в металле по ходу процесса может оставаться неизменным при постоянстве внешних условий или изменяться в сторону увеличения или уменьшения в зависимости от характера изменения внешних условий - температуры, окисленности ванны, количества шлака и т.п.

В конце плавки возможны следующая динамика содержания марганца в металле:

1. при [С]>0,2-0,3% за счет повышения температуры при низкой окисленности шлака концентрация марганца в металле в конце плавки повышается.

2. при [С]< 0,05-0,07%), вследствие резкого повышения содержания FeO в шлаке концентрация марганца в металле снижается (несмотря на дополнительное повышение температуры).

На остаточное содержание марганца в металле влияет основность шлака: более глубокое окисление марганца в кислых процессах, чем в основных, объясняется тем, что МnО, обладая основными свойствами, в кислых шлаках в значительной степени взаимодействует с SiО2 например, по реакции 2(MnO) + (SiO2) = (MnO)2-SiO2. Это приводит к снижению активности МnО в шлаке и смещению реакции вправо.

К концу плавки ввиду повышения температуры (1580-1620°С и более) и снижения содержания FeO в шлаке (8-12% при концентрации углерода в металле не менее 0,15-0,20%) значения Lmn снижаются до 10-20 и в металле остается 20-35 % марганца. Однако при выплавке стали с 0,05-0,07% С содержание FeO в шлаке в конце плавки снова повышается до 15-20% и более, что приводит к увеличению Lmn до 25-35 и выше и снижению остаточного содержания марганца до 15-20 %.

Обеспечение заданного содержания марганца в готовой стали

В большинстве случаев остаточное содержание марганца бывает значительно меньше заданного. Заданное содержание марганца в готовой стали обеспечивается введением его в металл в виде того или иного металлического марганецсодержащего материала (ферромарганца, силикомарганца, металлического марганца и др.) в ковш при выпуске.

2.4 Окисление и восстановление фосфора

В рудах фосфор всегда сопутствует железу, часто в больших количествах. В процессе восстановительной плавки рудного материала весь фосфор шихты переходит в чугун. Минимальное содержание фосфора в чугуне составляет 0,1-0,2%, максимальное 2-2,5%.

Повышенное содержание фосфора снижает пластичность металла (особенно ударную вязкость), также ухудшает прочность (предел прочности), пластичность и свариваемость нагретого металла.

В подавляющем большинстве случаев фосфор является вредной примесью стали, его содержание в металле особо ответственного назначения должно составлять не более 0,005-0,010%.

В шихту сталеплавильных печей фосфор попадает в основном из чугуна. Некоторое количество фосфора может попасть в шихту из лома, а также из ферросплавов.

Растворенный в металле фосфор может окисляться кислородом:

а) содержащимся в газовой фазе: 4/5[P ] + О2 раз = 2/5 (P2O5); ΔG0 = -619 280 + 175Т;

б) содержащимся в окислах железа шлака: 4/5 [Р] + 2 [FeO] = 2/5(P2O5)+ 2Fe; ΔG0= -143 050 + 66Т;

в) растворенным в металле: 4/5 [Р] + 2 [O] == 2/5 (P2O5) ΔG° = -385 220 + 170Т.

Знак «плюс» перед энтропийными членами в уравнениях свободной энергии свидетельствует о том, что при повышении температуры могут создаться благоприятные условия для восстановления фосфора.

Одной из основных реакций дефосфорации металла в сталеплавильных процессах является образование пентаоксида фосфора главным образом по реакции: 2[Р] + 5(FeO) = (P2O5) + 5[Fe]. Однако P2O5 термически неустойчив и при температурах сталеплавильных ванн в свободном состоянии существовать не может. Для успешной дефосфорации металла дополнительно необходимо образование прочных фосфатов в шлаке.

В кислых шлаках вследствие избытка SiO2 образование фосфатов получает ограниченное развитие и в результате оказывается, что при работе под такими шлаками фосфор, перешедший в шлак при относительно низких температурах, при повышении температуры восстанавливается и при обычных температурах сталеварения (>1500°С) практически весь переходит обратно в металл. Коэффициент распределения фосфора между кислым шлаком и металлом Lp = (Р)/[Р] составляет всего 1-3, поэтому на практике считают, что в этих процессах удаления фосфора из металла не происходит.

В основных шлаках при низких температурах начала плавки могут образоваться трифосфаты железа в основном по реакции

(P2O5) + 3(FeO) = (3FeO. P2O5)

Однако при высоких температурах фосфаты железа непрочны и фосфор может перейти обратно в металл. Для того, чтобы удалить фосфор из металла и удержать его в шлаке, необходимо снижать активность P2O5 в шлаке. Этого достигают при наведении основного шлака с помощью добавок извести (или известняка). При этом основная составляющая извести—СаО реагирует с P2O5, образуя фосфаты кальция (СаО)n-(P2O5), который по сравнению с другими фосфатами кальция имеет наибольшую устойчивость и температуру плавления. Поэтому на конечных стадиях плавки дополнительным условием обеспечения процесса дефосфорации металла является протекание реакции (P2O5) + 3(СаО) = (3СаО∙P2O5).

Комбинируя последнее уравнение с уравнением реакции образования P2O5, получим уравнение суммарной реакции дефосфорации металла в конце основного процесса:

2[Р] + 5(FeO) +3(СаО) = (3СаО. P2O5) + 5[Fe] + Q.

Таким образом, можно сформулировать основные условия, соблюдение которых позволяет удалять фосфор из металла:

1). наведение шлака высокой основности: для мартеновского процесса в пределах 2,5-2,8, а для кислородно-конвертерного процесса с верхней подачей дутья 3,0-3,5.

2). высокая окисленность шлака. Это связано с тем, что, во-первых, FeO принимает прямое участие в процессе дефосфорации (2[Р] + 5(FeO) = (P2O5) + 5[Fe]); во-вторых, FeO ускоряет растворение извести в шлаке, т. е. облегчает получение гомогенного шлака.

3) наличия шлаков, содержащих мало фосфора, для чего при переделе фосфористых чугунов проводят смены (скачивания) шлака;

4) невысокая температура. Прямое влияние температуры связано со знаком теплового эффекта реакции.


2.5 Удаление серы (десульфурация металла)

Сера является самой вредной примесью, снижающей механическую прочность и свариваемость стали, а также ухудшающей ее электротехнические, антикоррозионные и другие свойства.

Во время кристаллизации и при дальнейшем охлаждении металла весь избыток серы выше указанных пределов выделяется в виде сульфида железа FeS совместно с FeO. Чистый сульфид железа имеет температуру плавления 1190°С, а оксисуль-фидный расплав имеет эвтектику с температурой затвердевания ~985°С, т. е. значительно ниже температуры плавления металла (обычно ~1500°С). Это при кристаллизации металла приводит к выделению сульфида и оксисульфида железа в жидком виде. Выделяющиеся неметаллические включения располагаются по границам зерен в виде тонких пленок. Образование таких пленок резко снижает прочность металла при температурах (>1000°С), поскольку они при этих температурах, находясь в жидком или размягченном состоянии, ослабляют меж-зеренную связь в металле. Это явление называют красноломкостью стали. Красноломкость вызывает: 1) образование так называемых горячих трещин на слитках, литых заготовках и изделиях (деталях); 2) появление рванин, трещин и других поверхностных дефектов на прокате; 3) плохое сваривание внутренних усадочных пустот металла во время прокатки, вследствие чего головная обрезь от слитков возрастает при повышении содержания серы.

Не меньшее отрицательное влияние сера оказывает на служебные, прежде всего на прочностные свойства стали, особенно при низких температурах < (-30°С). Следовательно, повышенное содержание серы вызывает и красноломкость, и хладноломкость стали.

Сера является химически активным элементом и образует различные соединения, устойчивые при высоких температурах сталеплавильных процессов и способные переходить и в газовую, и в шлаковую фазы.

Обмен серы между газовой фазой и жидкой ванной

В процессе плавки сера можкт окисляться кислородом по реакциям:

  1.  [S]+2[О]={SO2} на границе газ-металл в пузырях СО, за счет кислорода металла
  2.  (S) + 2(FeO) = 2[Fe] +{SO2} на границе газ-шлак в пузырях СО, находящихся в объеме шлака;
  3.  на границе газ-металл, с участием кислорода газовой фазы [S]+{O2} ={SO2};
  4.  на границе газ-шлак, над ванной (S) + {O2}={SO2}

Таким образом, пузыри СО, проходящие через толщу металла, уносят некоторое количество серы. Это количество серы тем больше, чем выше содержание серы и кислорода в металле.

Результатом протекания реакции окисления серы газообразным кислородом на границе шлак-газ является наблюдаемое на практике удаление серы из ванны в газовую фазу в количестве  5-10% от исходного содержания серы в шихте.

Основная часть серы удаляется из металла окислительным шлаком

Традиционной является схема:

  •  сера, находящаяся в металле в виде сульфида железа, в соответствии с законом распределения переходит в шлак, [FeS] = (FeS).
  •  в шлаке происходит образование более прочного и плохо растворимого в металле сульфида кальция по реакции (FeS) + (СаО) = (CaS) + (FeO).
  •  суммарная (общей) реакция десульфурации [FeS] + (СаО) = (CaS) + (FeO).

Из структуры последнего уравнения вытекает, что для улучшения десульфурации металла прежде всего необходимо в шлаке повышение содержания свободного СаО, которое возможно повышением основности шлака, и снижение содержания FeO, которое определяется в основном концентрацией углерода в металле.

Влияние температуры на коэффициент распределения серы может быть прямым и косвенным. Прямое влияние связано с тепловым эффектом процесса перехода серы из металла в шлак. Этот процесс является экзотермическим, поэтому при постоянстве других условий, чем выше температура, тем меньше Ls, но это влияние незначительно, так как тепловой эффект процесса небольшой: -42 кДж/моль.

Косвенное влияние температуры на Ls заключается в том, что при высокой температуре можно обеспечить повышенную основность шлака, которая способствует увеличению Ls. Чем выше температура ванны, тем лучше десульфурация металла, если повышение температуры рационально используется для получения высокоосновного гомогенного шлака. Кроме того с повышением температуры ускоряются диффузионные процессы.

Сера является поверхностно активным элементом. Высокая поверхностная активность серы приводит к тому, что на поверхности раздела фаз концентрация серы выше, чем в объеме раствора. Поэтому наибольший эффект дает применение таких методов ведения плавки, которые обеспечивают увеличение поверхности контакта металла с десульфурирующей фазой (искусственное перемешивание металла со шлаком, вдувание в металл тонкоизмельченных порошкообразных реагентов и т. п.).

Однако основные возможности улучшения десульфурации металла заложены в изменении химического состава шлака.

Кислые шлаки обладают минимальной серопоглотительной способностью и обеспечивают L = 0,5-1,5. Это незначительное поглощение серы кислым шлаком происходит не в результате образования простых анионов S2-, а вследствие того, что сера частично замещает кислород в кремнекислородных анионах:

Основные окислительные шлаки обычного химического состава (B > 2,0-2,5) обеспечивают Ls = 3-7, иногда до 10, т. е. в несколько раз выше, чем для кислых шлаков. Коэффициент распределения серы между основным окислительным шлаком и металлом в период окислительного рафинирования зависит в основном от содержания в шлаке СаО и SiO2 или упрощенно - от основности шлака. Для наведения высокоосновного шлака жидкоподвижного шлака в ванну осуществляют присадки извести (известняка) и осуществляют скачивание первичного шлака для удаления из печи кремнезема.

Влияние FeO двойственно.  С одной стороны, наличие FeO в шлаке ускоряется растворение СаО и получение гомогенного высокоосновного шлака (разжижает шлак), что улучшает десульфурацию. С другой стороны наличие в шлаке FeO смещает равновесие реакции десульфурации в обратную сторону.

В целом серопоглотительная способность основных шлаков остается низкой из-за высокой окисленности сталеплавильных шлаков. В лучшем случае коэффициент распределения серы Ls= (S)/[S] в лучшем случае достигает 10, а обычно изменяется в пределах 3-7. При этом в одношлаковом режиме степень десульфурации R=[S]н/[Sможет составить 1,5-2, т. е. обеспечивает снижение содержания серы в металле в 1,5-2 раза (на 40-50 %), что в современных условиях часто бывает недостаточным.

В настоящее время в связи с повышением требований к качеству стали и разливкой ее на МНЛЗ обязательным элементом сталеплавильной технологии становится ковшевая десульфурация металла.

Таким образом, удалению серы из металла (десульфурации металла) способствуют:

1) наличие основных шлаков с высокой активностью CaO;

2) низкая окисленность металла шлака (минимум FeO);

3) низкая концентрация серы в шлаке (скачивание и наведение нового шлака);

4) перемешивание металла со шлаком и увеличение поверхности контакта;

5) повышение температуры ванны.


3 Конвертерное производство стали

3.1 История конвертерного производства стали

Конвертерный способ получения стали был предложен в 1855г. английским механиком Генри Бессемером. Метод заключался в переделе чугуна в сталь путем продувки жидкого чугуна воздухом, подаваемым через днище конвертера. Разработанный Бессемером агрегат для продувки чугуна, (от англ. converter преобразователь), представлял собой вращающийся вокруг горизонтальной оси сосуд, состоящий из металлического кожуха, футерованного изнутри кислым (динасовым) огнеупорным кирпичом. В футерованное днище вставляются шамотные фурмы с отверстиями для подачи воздуха, которые называются соплами. 

Наличие кислой футеровки предопределяло работу бессемеровского конвертера с кислыми шлаками, поэтому Бессемеровский процесс применялся только для передела низкофосфористых руд.

В 1878 г. англичанином Сиднеем Томасом была решена задача удаления фосфора из чугуна продувкой в конвертере с основной футеровкой, в качестве которой был использован обожженный доломит, и при наличии высокоосновного шлак. Для получения высокоосновного шлака в конвертер загружали известь. Способ переработки высокофосфористых чугунов путем продувки воздухом в конвертерах с основной футеровкой получил название томасовского, а конвертер с основной футеровкой — томасовского конвертера.

Достоинства и недостатки бессемеровского и томасовского процессов

Достоинства бессемеровского и томасовского процессов — высокая производительность, простота устройства конвертера, отсутствие необходимости применять топливо, малый расход огнеупоров и связанные с этим более низкие, чем при мартеновском и электросталеплавильном процессах капитальные затраты и расходы по переделу.

Однако обоим процессам присущ большой недостаток — повышенное содержание азота в стали (0,010—0,025 %), вызываемое тем, что азот воздушного дутья растворяется в металле. По этой причине бессемеровская и томасовская сталь обладают повышенной хрупкостью и склонностью к старению. Для получения стали с пониженным содержанием азота в 1950—65 применялись способы продувки снизу парокислородной смесью и смесью кислорода и углекислого газа, а также метод продувки дутьем, обогащенным кислородом.

В 50-х годах XX века в ряде стран Европы были разработаны и внедрены многочисленные варианты конвертерного процесса с применением кислорода. Эти процессы получили общее название кислородных конвертерных процессов.

В период с 1955 по 1975 гг. бессемеровский и томасовский процессы и их разновидности были вытеснены кислородно-конвертерными процессами с верхней и нижней подачей дутья.

3.2 Устройство кислородного конвертера с верхней продувкой

Кислородно-конвертерный процесс — это выплавка стали из жидкого чугуна с добавкой лома в конвертере с основной футеровкой и продувкой кислородом сверху через водоохлаждаемую фурму.

Кислородно-конвертерный процесс, обладает рядом преимуществ по сравнению с мартеновским и электросталеплавильным процессами:

1) более высокая производительность одного работающего сталеплавильного агрегата (часовая производительность мартеновских и электродуговых печей не превышает 100 т/ч, а у большегрузных конвертеров достигает 400—500 т/ч);

2) более низкие капитальные затраты, т. е. затраты на сооружение цеха, что объясняется простотой устройства конвертера и возможностью установки в цехе меньшего числа плавильных агрегатов;

3) меньше расходы по переделу, в число которых входит стоимость электроэнергии, топлива, огнеупоров, сменного оборудования, зарплаты и др;

4) процесс более удобен для автоматизации управления ходом плавки

Благодаря использованию для продувки чистого кислорода, кислородно-конвертерная сталь содержит азота не более, чем мартеновская и по качеству не уступает мартеновской. Тепла, которое выделяется при окислении составляющих чугуна с избытком хватает для нагрева стали до температуры выпуска и позволяет использовать до 24-28% лома в шихте.

Устройство кислородного конвертера

Кислородный конвертер представляет собой поворачивающийся на цапфах сосуд грушевидной формы, футерованный изнутри и снабженный леткой для выпуска стали и отверстием сверху для ввода в полость конвертера кислородной фурмы, отвода газов, заливки чугуна, загрузки лома и шлакообразующих и слива шлака (см. рисунок 4). Емкость существующих конвертеров составляет 10—450 т.

1 — опорный подшипник; 2 — цапфа; 3 — защитный кожух; 4 — опорное кольцо;

5 —корпус ведомого колеса; 6 — навесной электродвигатель с редуктором;

7 — ведомое зубчатое колесо; 8 — демпфер навесного электродвигателя;

 9 — демпфер корпуса ведомого колеса; 10 — опорная станина

Рисунок 4 – Устройство кислородного конвертера

Форма конвертера. В конфигурации кожуха и внутреннего рабочего объема конвертера можно выделить три части: суживающуюся верхнюю часть (горловину), цилиндрическую часть и днище, которое может быть либо сферическим, либо иметь суживающуюся часть, к которой примыкает днище.

Размеры, конвертера. Они влияют на многие показатели процесса и должны, прежде всего, обеспечивать продувку без выбросов металла через горловину, поскольку выбросы уменьшают выход годной стали и требуют периодических остановок конвертера для удаления настылей металла с горловины и входной части котла-утилизатора. Размеры некоторых конвертеров приведены в таблице.

Размеры некоторых кислородных конвертеров

Емкость, т

Высота рабочего пространства, Н, м

Диаметр рабочего пространства, м

Отношение H/D

Удельный объем, м3

Глубина ванны, м

Диаметр горловины, м

100

7,65

4,00

1,90

0,96

1,50

1,65

200

9,50

5,95

1,60

1,03

1,78

3,10

300

9,27

6,55

1,41

0,87

1,90

3,43

Основные параметры, определяющие возможность работы конвертера без выбросов — это удельный объем (объем рабочей полости, приходящийся на 1 т жидкой стали, м3/т) и отношение высоты рабочего объема к его диаметру, H/D.

Удельный объем должен находиться в оптимальных пределах. Если он недостаточен, то при продувке возникают выбросы вспенивающихся металла и шлака. Вместе с тем, если удельный объем чрезмерно велик, то неоправданно возрастают габариты конвертера и высота конвертерного цеха, теплоотдающая поверхность кожуха и теплопотери, расход огнеупоров на кладку футеровки.

В последние годы для проектируемых конвертеров емкостью 100—400 т с учетом сложившегося режима продувки (150— 250 м3/мин кислорода на одно сопло фурмы) величину удельного объема принимают в пределах от 0,8—0,85 до 1,0 м3/т, причем эта величина должна понижаться при росте емкости конвертера.

Выбирая величину H/D учитывают, что при ее снижении стенки конвертера отдаляются от высокотемпературной подфурменной зоны, что способствует повышению их стойкости; возрастает также площадь контакта металл-шлак, что облегчает удаление в шлак фосфора и серы. Вместе с тем при чрезмерном снижении H/D, т. е. уменьшение высоты конвертера, начинаются выбросы, поскольку вспенивающийся металл достигает низко расположенной горловины. При росте H/D вероятность появления выбросов снижается, но и увеличение H/D сверх оптимальной величины не рекомендуется, поскольку это требует увеличения высоты здания цеха.

Для проектируемых в последние годы конвертеров емкостью 100—400 т величину H/D принимают в пределах 1,8—1,35, причем в этих пределах она обычно снижается пропорционально увеличению емкости конвертера. Это связано с тем, что для предотвращения выбросов, расстояние от уровня ванны в спокойном состоянии до верха горловины для конвертеров емкостью 100—400 т должно составлять примерно 6—8 м.

Глубина ванны жидкого металла в спокойном состоянии изменяется от 1,0 до 1,8—1,9 м, возрастая при увеличении емкости конвертера. Даже для конвертеров малой емкости (50 т) она не должна быть менее 1 м во избежание разрушения футеровки днища кислородными струями. Увеличение глубины ванны сверх 1,9 м также не рекомендуется, так как при этом из-за недостаточного проникновения вглубь ванны кислородных струй и ухудшения перемешивания ванны затрудняется плавление стального лома.

Диаметр горловины Dг существующих конвертеров емкостью от 50 до 400 т находится в пределах (0,4—0,6)D и изменяется от 1,0 до 4,1 м, обычно увеличиваясь при увеличении емкости конвертера. При выборе величины Dг учитывают, что горловина больших размеров позволяет производить завалку стального лома в один прием, что сокращает длительность плавки. Вместе с тем, при увеличении Dг возрастают теплопотери и несколько повышается содержание азота в выплавляемой стали, поскольку через большую горловину в полость конвертера подсасывается больше воздуха, азот которого растворяется в металле. Поэтому горловина не должна быть больше, чем это необходимо для загрузки шихты.

Угол наклона стенок горловины к вертикали в существующих конвертерах составляет 20—35°. На основании отечественной практики признано нецелесообразным делать угол более 25°, так как при большем уклоне ухудшается стойкость футеровки горловины.

Кожух и днище. Кожух конвертера выполняют сварным из листовой стали толщиной от 20 до 110 мм и делают его либо цельносварным, либо с отъемным днищем, которое крепится болтами или клиновыми соединениями. Горловина в большей степени, чем другие элементы кожуха подвержена воздействию высоких температур и короблению и может быть повреждена при удалении застывших выплесков металла и в процессе слива шлака. Поэтому верх горловины защищают сварным или литым шлемом, который в случае повреждения легко заменить.

Днище конвертеров обычно делают сферическим. Эта форма облегчает циркуляцию металла при верхней подаче дутья и способствует снижению износа футеровки. Широко применяются как неотъемные, так и отъемные днища. Отъемные днища могут быть приставными и вставными.

Цапфы и опорное кольцо. Конвертер цапфами опирается на роликовые опорные подшипники, закрепленные в опорных станинах. Подшипники обеспечивают возможность вращения конвертера вокруг оси цапф; при этом один подшипник фиксированный, а другой «плавающий», что дает возможность перемещения вдоль оси цапф на 15—30 мм.

Механизм поворота. Он обеспечивает вращение конвертера вокруг оси цапф на 360° со скоростью до 1 об/мин. Поворот конвертера необходим для выполнения технологических операций: заливки чугуна, завалки лома, слива стали и шлака и др.

Механизм поворота может быть односторонним (для малык конвертеров – до 100т) и двусторонним (для большегрузных конвертеров), позволяющим более равномерно распределить нагрузки при наклоне конвертера.

Механизмы поворота бывают стационарными и навесными. В последние годы применяют более совершенные навесные (закрепленные на цапфе) многодвигательные механизмы поворота.

Навесной многодвигательный привод обладает следующими преимуществами: перекос цапф не влияет на его работоспособность; при выходе из строя одного двигателя привод остается работоспособным; в 2—3 раза уменьшается масса привода; существенно уменьшается площадь, необходимая для его установки.

Футеровка. Футеровка конвертера работает в тяжелых условиях, подвергаясь воздействию высоких температур; термических напряжений, возникающих при колебаниях температуры футеровки; ударов кусков шихты при загрузке и знакопеременных нагрузок, возникающих при вращении конвертера. Она изнашивается также в результате химического взаимодействия со шлаком и размывающего действия потоков металла и шлака.

Футеровку обычно делают двухслойной. Примыкающий к кожуху арматурный слой толщиной 110—250 мм уменьшает теплопотери и защищает кожух в случае прогара рабочего слоя. Арматурный слой выполняют из магнезитового или магнезито-хромитового кирпича. Внутренний или рабочий слой изнашивается во время работы и его заменяют при ремонтах футеровки; его толщина в зависимости от емкости конвертера составляет 500—750 мм.

Для кладки рабочего слоя используют огнеупоры на основе доломита (CaO-MgO) и магнезита на связке из каменноугольной смолы.

Стойкость футеровки в зависимости от качества огнеупоров и условий работы конвертера составляет 400—900 плавок (2—5 кг на 1 т стали).

С целью повышения стойкости футеровки конвертеров применяется горячее торкретирование футеровки. Суть торкретирования сводится к нанесению с помощью торкрет-машин огнеупорной массы на изношенные участки футеровки.

Длительность торкретирования обычно не превышает 5 мин, его проводят после каждой или после нескольких плавок. Рекордная стойкость футеровки при торкретировании достигнута на одном из японских заводов — 10 110 плавок при расходе огнеупорного кирпича и торкрет-массы 0,19 и 1,38 кг/т стали соответственно.

Кислородная фурма. Кислород подают в конвертер через вертикально расположенную водоохлаждаемую фурму, которую вводят в полость конвертера через горловину строго по его оси. Давление кислорода перед фурмой составляет 1,0—1,6 МПа. Высоту фурмы над ванной можно изменять по ходу плавки; обычно она увеличивается при росте емкости конвертера и находится в пределах 0,8— 3,3 м от уровня ванны в спокойном состоянии.

Фурма выполнена из трех концентрично расположенных стальных труб и снабжена снизу медной головкой с соплами. Полости, образованные трубами, служат для подачи кислорода, подвода и отвода охлаждающей воды.

Медная головка фурмы имеет от 3 до 7 сопел типа сопла Лаваля, возрастая при увеличении расхода кислорода и емкости конвертера. Многосопловые фурмы благодаря рассредоточению кислородного потока на несколько струй обеспечивают «мягкую» продувку и минимальное количество выбросов. Кроме того, они дают возможность увеличить интенсивность подачи кислорода и сократить, благодаря этому, длительность плавки. Стойкость головок фурм составляет 50—250 плавок.


3.3 Шихтовые материалы и требования к ним

Основным шихтовым материалом кислородно-конвертерного процесса является жидкий чугун. Состав чугунов, перерабатываемых на разных заводах изменяется в широких пределах: 3,7—4,6 % С; 0,4—2,6 % Mn; 0,3—2,0 % Si; 0,02—0,08 % S; <0,3 % P.

Оптимальное содержание кремния в чугуне [Si]опт = 0,6—0,9 %. При излишне высоком содержании кремния возрастает расход извести для ошлакования образующейся SiO2 и увеличивается количество шлака в конвертере, что ведет к росту потерь железа со шлаком и способствует появлению выбросов; понижается также стойкость футеровки конвертера. Вместе с тем при очень низком (<0,3 %) содержании кремния замедляется шлакообразование в связи с медленным растворением извести из-за слишком низкого содержания SiO2, в первичных шлаках, а также снижается приход тепла.

Содержание марганца в чугунах, используемых на большинстве отечественных заводов, находится в пределах 0,2—1,1 %. Наличие в первичных шлаках закиси марганца ускоряет растворение извести, ускоряет шлакообразование, что улучшает дефорсфорацию и десульфурацию, а также уменьшает количество выбросов и повышает стойкость футеровки. Кроме того, наличие MnO снижает поверхностное натяжение шлака, который изолирует металл от воздействия атмосферы (азот). Поэтому для конвертерного передела желательно иметь содержание марганца в чугуне не менее 0,8%.

Содержание фосфора в чугуне не должно превышать 0,2—0,3 %, поскольку при большем его содержании необходимо осуществлять промежуточный слив шлака во время продувки и наведение нового, что снижает производительность конвертера.

Поскольку десульфурация металла при плавке в кислородном конвертере протекает недостаточно полно, чугун должен содержать менее 0,03—0,04 % серы.

Температура жидкого чугуна, перерабатываемого в кислородных конвертерах обычно составляет 1300—1450 °С. Применять чугун с более низкой температурой нежелательно, так как это ведет к холодному началу продувки и замедлению шлакообразования.

Количество стального лома доходит до 25—27 % от массы шихты. К лому, как и при прочих сталеплавильных процессах, предъявляется требование о недопустимости высокого содержания фосфора, серы, примесей цветных металлов и ржавчины. Кроме того, ограничивают максимальный размер кусков лома, поскольку слишком большие куски могут не успевать раствориться в металле за время продувки, а во время загрузки могут повредить футеровку конвертера. Для конвертеров емкостью 100—350 т размер кусков лома не должен быть более 0,3х0,3х1,0 м, а пакетов лома не более 0,7х1х2 м.

Основные шлакообразующие материалы — это известь и плавиковый шпат, иногда в качестве шлакообразующих или охладителей используют также железную руду, прокатную окалину, боксит, агломерат, рудно-известковые окатыши.

Известь должна быть свежеобожженной и содержать >90 % СаО, <3 % SiO2 и <0,05—0,1 % S. Куски извести должны иметь размеры от 10 до 50 мм. Применение более мелких кусков извести не допускается, так как они будут вынесены из конвертера отходящими газами.

Плавиковый шпат — эффективный разжижитель шлака. Он содержит 75—92 % CaF2, основной примесью является SiO2. Железная руда, агломерат и окатыши должны содержать не более 8 % SiO2, размер кусков руды должен быть 20—50 мм.

Боксит содержит 37—50 % А2О3, 10—20 % SiO2 и 12—25 % Fe2O3; обычно в нем также много влаги (10—20 %), что требует предварительной просушки во избежание внесения в сталь водорода.


3.4 Технология кислородно-конвертерной плавки

Наиболее простым и самым распространенным вариантом конвертерных процессов является проведение плавки в одношлаковом (моношлаковом) режиме. В этом случае технологический цикл обычно состоит из нескольких операций, продолжительность которых приведена ниже, мин:

Завалка лома

3-4

Заливка чугуна

3-4

Продувка

10-25

Взятие пробы, ожидание анализа

3-4

Слив (выпуск) металла

5-10

Слив шлака

1-2

Осмотр и подготовка конвертера к

очередной плавке, в т. ч. торкретирование

0-5

Общая длительность цикла (плавки)

25-50

Продолжительность отдельных операций и цикла (плавки), как правило, не зависит от вместимости конвертера. Это объясняется тем, что по мере повышения вместимости конвертера повышается интенсивность дутья (3-7 м3/т-мин) и совершенствуется оборудование, позволяющее уменьшить продолжительность таких операций, как завалка лома, заливка чугуна и т.д.

Перед началом каждой плавки осуществляют ее шихтовку (планирование), то есть определяют оптимальные для данных условий количества (расходы) чугуна, лома, шлакообразующих материалов и кислорода, обеспечивающие по окончании продувки получение металла с заданной массой, температурой и концентрацией углерода, фосфора и серы.

Ход плавки. Плавку начинают с загрузки в конвертер лома. Завалка лома осуществляется в наклонном положении конвертера при помощи совков, объем которых принимают такими, чтобы весь лом был подан в одном совке, т. е. загрузку осуществить в один прием. Равномерное распределение лома на днище достигается наклоном конвертера в противоположную от загрузки сторону. Затем из заливочного ковша через горловину наклоненного конвертера заливают жидкий чугун. Заливка чугуна в требуемом количестве, известного химического состава и температуры осуществляется в один прием при помощи чугуновозных ковшей соответствующей вместимости.

После заливки чугуна конвертер поворачивают в вертикальное рабочее положение. В полость конвертера вводят фурму, включая подачу кислорода – период продувки. Затем загружают первую порцию шлакообразующих (известь с плавиковым шпатом и иногда с добавкой руды, окалины, окатышей, боксита). В первую порцию входит. 1/2—2/3 шлакообразующих, оставшееся количество вводят несколькими порциями в течение первой трети длительности продувки. Эти материалы вводят порциями 1% массы металла, чтобы не вызвать переохлаждения ванны и нарушения нормального хода плавки. Часть извести (20-40%) иногда вводят до заливки чугуна.

За счет вводимого кислорода окисляются избыточный углерод, а также кремний, марганец и небольшое количество железа, причем окисление кремния и марганца заканчивается в первые 3—4 мин продувки.

Из образующихся окислов (исключая СО) и загружаемой в конвертер извести и других сыпучих формируется шлак. Основность его по мере растворения извести увеличивается и к концу продувки составляет 2,5—3,7. В течение всей продувки в шлак из металла удаляются фосфор и сера.

Образующиеся при окислении углерода пузырьки СО вспенивают металл и шлак и существенно усиливают циркуляцию шлака и металла, что ускоряет процессы окисления, дефосфорации, десульфурации, нагрева металла и др. Вместе с пузырьками окиси углерода из металла удаляются растворенные в нем вредные газы — водород и азот.

Выделяющееся при реакциях окисления тепло обеспечивает нагрев металла до требуемой перед выпуском температуры и расплавление стального лома. Плавление лома обычно заканчивается в течение первых 2/3 длительности продувки.

Газообразные продукты окисления углерода (СО и немного СО2) покидают конвертер через горловину, образуя высокотемпературный поток отходящих газов, в котором содержится много (до 250 г/м3) мелкодисперсных частиц Fе2О3. Наличие в отходящих газах большого количества оксидов железа связано с интенсивным испарением железа и его оксидов (дымовыделение). С отходящими газами выносятся также мелкие капели металла и шлака, мелкие частицы сыпучих материалов, а также возможны выбросы (выливания через горловину) металла и шлака.

Для очистки конвертерного газа от пыли 50-200 г/м3 каждый конвертер оборудуется сложной системой охлаждения и очистки отходящих газов с фильтрами "мокрого" или "сухого" типов.

Продувка в зависимости от интенсивности подачи кислорода (3-7 м3/т мин) и удельного расхода кислорода на процесс 45-55 м3/т  продолжается от 10 до 25 мин и должна быть закончена на заданном для выплавляемой марки стали содержании углерода. К этому моменту металл должен быть нагрет до необходимой температуры (1600—1650 °С), а содержание серы и фосфора в нем не должно превышать допустимых для данной марки стали пределов.

Окончив продувку из полости конвертера выводят кислородную фурму и осуществляют отбор пробы металла и шлака на химический анализ, а также измерение температуры металла. При отклонении от заданного состава или температуры металла осуществляют операции по исправлению плавки:

а) при избыточном содержании углерода проводится кратковременная додувка, обеспечивающая получение заданного содержания углерода.

б) при излишне высокой температуре проводят охлаждение металла, вводя в него охладители и делая выдержку после их ввода в течение 3—4 мин.

в) при недостаточной температуре металла проводят додувку при повышенном положении фурмы или же вводят в конвертер ферромарганец или снликомарганец с последующей додувкой;

г) при недостаточном содержании углерода производят науглероживание металла присадками молотого кокса или графита на струю металла при его выпуске в ковш.

После любой корректировки, проведенной в конвертере, снова отбирают пробы металла и шлака, измеряют температуру.

После выполнения необходимых операций по исправлению плавки конвертер наклоняют, осуществляя выпуск стали в ковш через летку. Выпуск металла совмещается с его раскислением-легированием (присадкой ферросплавов и алюминия в ковш), поэтому продолжительность этой операции должна быть достаточной для полного расплавления и равномерного распределения в объеме металла вводимых присадок. Она зависит от вместимости конвертера, но не должна быть < 5 мин. Конвертерный шлак отсекают, забрасывая специальные шары внутрь конвертера в конце выпуска или подавая инертный газ в сталевыпускное отверстие снаружи.

Слив шлака осуществляют в шлаковую чашу через горловину конвертера, повернув его в противоположную от выпуска металла сторону (рис. 65д).

Осмотр и подготовка конвертера к очередной плавке сводятся к осмотру и восстановлению футеровки, устранению обнаруженных повреждений. К обычным повреждениям относятся неизбежный износ (более или менее равномерное разрушение) футеровки и образование настылей, в первую очередь на горловине. Неизбежный износ футеровки восстанавливают торкретированием.

Общая длительность плавки в конвертерах емкостью от 50 до 400 т составляет 30—55 мин.


3.5 Дутьевой режим плавки

Режим подачи кислорода в конвертерную ванну оказывает большое влияние на длительность продувки, ход шлакообразования, величину входа жидкой стали и ее качество, на стойкость футеровки конвертера.

Дутьевой режим плавки можно считать оптимальным, если обеспечивается выполнение следующих основных требований: 1) высокая скорость удаления примесей металла (окисления углерода) при наиболее полном и примерно постоянном усвоении кислорода; 2) быстрое шлакообразование; 3) отсутствие выбросов металла и шлака; 4) минимальное образование выносов и дыма; 5) минимальное содержание газов в конечном металле. Выполнение этих требований возможно лишь при поддержании в заданных пределах основных параметров дутьевого режима, к которым относятся интенсивность подачи дутья (продувки), давление и чистота кислорода, положение (высота) фурмы над уровнем спокойной ванны и удельный расход кислорода.

Удельный расход кислорода изменяется в пределах от 47 до 57 м3/т стали, возрастая при увеличении содержания окисляющихся примесей в чугуне и снижаясь при увеличении доли стального лома в шихте, поскольку лом содержит меньше окисляющихся элементов, чем чугун.

Давление  кислорода перед фурмой должно быть в определенных пределах. Выходные сопла Лаваля кислородной фурмы преобразуют энергию давления газа в кинетическую. Для достаточного заглубления кислородных струй в ванну и полного усвоения металлом кислорода необходима высокая кинетическая энергия струй, поэтому размеры сопел рассчитывают так, чтобы скорость струи на выходе из них составляла 450—500 м/с. Давление кислорода перед фурмой при этом должно быть 1,2—1,6 МПа.

Высота расположения фурмы имеет оптимальные пределы. При чрезмерно высоком расположении фурмы кислородные струи не будут внедряться в металл («поверхностный обдув») и будет низка степень усвоения кислорода; при чрезмерно низком положении («жесткая продувка») усиливается вынос капель металла отходящими газами и абразивный износ фурмы каплями металла, существенно замедляется шлакообразование и др. С учетом этого в конвертерах разной емкости фурму устанавливают на высоте, соответствующей расстоянию до уровня ванны в спокойном состоянии от 0,8 до 3,3 м. В этих пределах высота обычно возрастает при увеличении емкости конвертера и зависит также от конкретных условий работы данного конвертера.

Изменение  высоты  положения фурмы во время продувки обычно используют для регулирования окисленности шлака и ускорения его формирования.

Интенсивность  продувки (в отличие от расхода кислорода в единицу времени, который возрастает при росте емкости конвертера и для большегрузных конвертеров достигает 2000 м3/мин), не зависит от емкости; она определяется главным образом конструкцией кислородной фурмы (числом сопел в ней) На разных заводах величина интенсивности J находится в пределах 3—5,0 и иногда доходит до 7 м3/т-мин при применении 7-ми сопловых фурм.

Интенсивность продувки J определяет длительность продувки t. Связь между величинами t и J примерно можно выразить следующим уравнением: t = Q/J, где Q — удельный расход кислорода, равный как выше отмечалось 47—57 м3/т.

Чистота кислорода оказывает большое влияние на качество стали, поскольку от нее зависит содержание в стали азота. Так, например, при использовании кислорода со степенью чистоты 98,3—98,7 % сталь содержит 0,004—0,008 % N, а при степени чистоты кислорода 99,5—0,002—0,004 % N. Для предотвращения насыщения металла азотом необходимо применять кислород c чистотой не менее 99,5 %.


3.6 Поведение составляющих чугуна при продувке

Реакции окисления. В течение продувки за счет подаваемого в конвертер кислорода окисляется избыточный углерод, а также, кремний, большая часть марганца и некоторое количество железа.

Для продувки в конвертере характерно прямое окисление железа в зоне контакта кислородной струи с металлом (в «первичной реакционной зоне») и окисление прочих составляющих металла за счет вторичных реакций на границе с первичной реакционной зоной и в остальном объеме ванны.

Соответственно окисление, например, углерода идет по следующим схемам:

Fe + 1/2О2 = FeO;   Fe + 1/2О2  = FeO;

FeO = [О] +Fe;        FeO = (FeO);

[C] + [О] == CO;    [C] + (FeO) = CO + Fe.

Если просуммировать уравнения реакций правого или левого столбцов, то в обеих случаях получим итоговую реакцию окисления углерода: [С] + 1/2О2 = СО, которая, таким образом, отражает лишь начальное и конечное состояние процесса окисления.

Окисление  кремния и марганца, так же как и углерода начинается с момента подачи кислорода (рисунок 5), причем весь кремний и большая часть марганца выгорают в первые минуты продувки. Более быстрое их окисление по сравнению с углеродом объясняется различием в химическом сродстве разных элементов к кислороду при различных температурах.

Рисунок 5 – Динамика состава металла и шлака в процессе продувки кислородом

На рисунке 6 приведена зависимость химического сродства ряда элементов к кислороду от температуры; при этом величина химического сродства тем больше, чем больше по абсолютной величине отрицательное значение ΔG.

Из рисунка 6 следует, что при температурах ниже 1450—1500 °С кремний и марганец обладают более высоким сродством к кислороду, чем углерод; при более же высоких температурах сродство углерода к кислороду превышает сродство марганца и кремния. В соответствии с этим марганец и кремний окисляются в начале продувки, когда температура в конвертере сравнительно невысока.

Окисление кремния заканчивается в первые 3—5 мин продувки и в дальнейшем по ходу плавки жидкий металл кремния не содержит. Реакция окисления кремния протекает до его полного израсходования и является необратимой, поскольку продукт окисления кислотный окисел SiO2, связывается в основном шлаке в прочное соединение 2CaO-SiO2.

Интенсивное окисление марганца наблюдается в начале продувки, когда при низких температурах его химическое сродство к кислороду велико; к 3—5 мин продувки окисляется около 70 % марганца, cодержащегося в чугуне. В дальнейшем поведение марганца определяется равновесием экзотермической реакции

n] + (FеО) = (МnО) + Fе + 122 950 Дж/моль.

В соответствии с этой реакцией отмечаются (см. рисунок 5) следующие особенности поведения марганца: при уменьшении содержания FеО в шлаке во второй половине продувки содержание марганца в металле возрастает; в конце продувки, когда вследствие усиливающегося окисления железа содержание окислов железа в шлаке возрастает, наблюдается вторичное окисление марганца. Конечное содержание марганца в металле зависит прежде всего от его содержания в чугуне и возрастает при увеличении температуры металла в конце продувки и снижении окисленности шлака. В обычных условиях выплавки рядовых марок сталей к концу плавки в металле остается 20-30% Mn от общего содержания его в шихте.

Окисление углерода в кислородном конвертере происходит преимущественно до СО. В начале продувки (см. рисунок 5), когда интенсивно окисляются кремний и марганец, а температура ванны мала, скорость окисления углерода сравнительно невелика (0,10—0,15 %/мин). В дальнейшем, вследствие повышения сродства углерода к кислороду при росте температуры (см. рисунок 6) и уменьшения расхода кислорода на окисление марганца и кремния, скорость окисления углерода возрастает, достигая к середине продувки максимума (0,35—0,45 %/мин). В конце продувки она вновь снижается вследствие уменьшения содержания углерода в металле.

Дефосфорация — то есть удаление из металла в шлак фосфора, осуществляется по экзотермической реакции

2 [Р] + 5 (FeO) + 3 (CaO) = (ЗСаО.Р2О5) + 5Fe + 767 290 Дж/моль,

для успешного протекания которой необходимо повышенные основность и окисленность шлака и невысокая температура.

Дефосфорация начинается сразу после начала продувки (см. рисунок 6), что объясняется быстрым началом формирования основного железистого шлака в конвертере. Поскольку реакция удаления фосфора сопровождается выделением тепла, дефосфорация наиболее интенсивно протекает в первой половине продувки при сравнительно низкой температуре.

В итоге величина коэффициента распределения фосфора между шлаком и металлом (P2O5)/[P], характеризующего результат дефосфорации, изменяется от 40 до 80—100 и в этих пределах обычно тем выше, чем выше основность и окисленность шлака и чем ниже температура металла в конце продувки. Обычно при содержании фосфора в чугуне менее 0,15—0,20 % металл в конце продувки содержит 0,002—0,004 % фосфора.

Десульфурация  в кислородном конвертере происходит в течение всей продувки и, главным образом, путем удаления серы из металла в шлак. Вместе с тем, часть серы (менее 10%) удаляется в виде SO2 в результате ее окисления кислородом дутья.

Как известно для успешного протекания реакции десульфурации

[FeS] + (СаО) = (CaS) + (FeO)

необходимы высокая основность шлака и низкое содержание в нем окислов железа. Конвертерный же шлак содержит значительное количество FeO (7—20 % и более), поэтому десульфурация получает ограниченное развитие. Степень десульфурации обычно составляет 30—40 %, а коэффициент распределения серы между шлаком и металлом - (S)/[S] невелик (от 2 до 10).

3.7 Шлакообразование и требования к шлаку

Параметры шлакового режима — состав, вязкость, количество шлака и скорость его формирования оказывают сильное влияние на результаты плавки.

Требования к шлаку. Шлаковый режим должен обеспечить достаточно полное удаление фосфора и серы из металла во время продувки. С этой целью основность шлака должна быть достаточно высокой (от 2,5 до 3,7), а вязкость невелика, так как в густых шлаках замедляются процессы диффузии компонентов, участвующих в реакциях дефосфорации и десульфурации.

Скорость формирования шлака. В связи с кратковременностью продувки чрезвычайно важно обеспечить как можно более раннее формирование шлака.

В кислородно-конвертерном процессе с верхней подачей дутья имеются благоприятные условия для шлакообразования (растворения извести): 1) высокая температура в шлаковой зоне ванны (до 2000°С), вызываемая взаимодействием струи кислорода с металлом; 2) интенсивное перемешивание ванны под действием струи кислорода и выделяющегося из ванны СО; 3) возможность изменения содержания оксидов железа в шлаке изменением положения кислородной фурмы относительно поверхности ванны.

Формирование основного шлака сводится к растворению загружаемой в конвертер кусковой извести в жидкой шлаковой фазе—продуктах окисления составляющих чугуна (SiO2, MnO, FeO). Известь тугоплавка (температура плавления СаО составляет 2570 °С), поэтому для ее растворения необходимо взаимодействие СаО с окислами шлаковой фазы с образованием легкоплавких химических соединений.

Для ускорения шлакообразования в конвертер в начале продувки обычно присаживают плавиковый шпат (CaF2), а также обогащают шлак оксидами железа за счет продувки при повышенном положении фурмы, и иногда за счет присадок железной руды, агломерата, окатышей, боксита.

Шлаковый режим. После начала продувки в конвертер вводят первую порцию шлакообразующих — примерно 1/2—2/3 их общего количества. В эту порцию обычно входят известь и плавиковый шпат; иногда вместо плавикового шпата применяют боксит, агломерат, окатыши, железную руду. Оставшееся количество шлакообразующих вводят одной или несколькими порциями в течение 1/3 длительности продувки. Иногда для ускорения шлакообразования часть извести (20-40%) загружают в конвертер перед заливкой чугуна.

Общий расход извести составляет 5—8 % от массы плавки; его определяют расчетом так, чтобы обеспечивалась требуемая основность шлака. Расход плавикового шпата обычно составляет 0,15—0,3 % и иногда достигает 1 %.

Кроме плавикового шлака, разжижающего первичные шлаки, для ускорения формирования шлака продувку начинают при повышенном положении фурмы для насыщения шлака оксидами железа.

По ходу продувки состав шлака изменяется: в результате растворения извести содержание СаО в шлаке возрастает, а содержание SiO2, MnO и FeO снижается. Заметно уменьшается содержание FeO в период наиболее интенсивного окисления углерода (середина продувки), когда сильное развитие получает реакция окисления углерода за счет окислов железа шлака. В конце продувки, когда углерода в металле мало, начинает окисляться железо и содержание FeO в шлаках возрастает.

3.8 Поведение железа и выход годного металла

В кислородно-конвертерном процессе, как в любом другом сталеплавильном процессе, в зависимости от периода плавки возможно как окисление, так и восстановление железа. Во время присадки твердых окислителей происходит восстановление железа в первую очередь углеродом металла по реакции Fe2O3 + 3[С] = 3{СО} + 2[Fe]. В период интенсивного формирования шлака в начале и конце плавки (при [С] < 0,1%) железо окисляется.

Если рассматривать плавку в целом, то в кислородно-конвертерных процессах наблюдается окисление железа, так как обычно присаживаемое количество оксидов железа в виде твердых окислителей (< 1 % от садки) меньше их количества, необходимого для формирования шлака (2-3%), поэтому неизбежные потери железа в результате его окисления и перехода в шлак обычно составляют 0,7-1,5%. Если плавка в целях возможно большей переработки лома ведется без твердых окислителей, то потери железа в результате его окисления повышаются до 1,5-2,0%. Кроме того, железо испаряется и уносится газами в виде частичек Fе2О3 бурого цвета. Средний выход газа в кислородных конвертерах составляет - 70 м3/т, а среднее содержание в нем пыли (в основном оксиды железа) 100-150 г/м3, следовательно, потеря железа в результате испарения в среднем составляет 1-1,5 от массы металла и уменьшаются при сокращении длительности продувки.

Часть железа теряется с корольками железа шлака. Содержание корольков железа в шлаке неизбежно и в конечном конвертерном шлаке колеблется в пределах 2-5%. Нижний предел относится к случаям выплавки низкоуглеродистой стали (< 0,1% [С] жидкий высокозакисный шлак), верхний - высокоуглеродистой (>0,5% [С] низкоокисленный шлак). Количество шлака 11-16%, поэтому потери с корольками составляют > 0,5%.

Вынос мелких капель металла отходящими газами наблюдается в начале продувки, когда поверхность металла не защищена шлаком и усиливается при приближении фурмы к поверхности ванны. В связи с этим следует обеспечивать раннее образование шлака. Общие потери металла с выбросами и выносом составляют в среднем около 1 %.

В целом общие потери железа при плавке стали в конвертерах с верхней подачей дутья обычно 3-4%, но могут достигать >5%, если продувка и шлакообразование протекают не в оптимальном режиме.

Кроме железа в процессе продувки окисляется весь кремний, большая часть углерода и марганца чугуна. Выход жидкой стали (выход годного) при кислородно-конвертерном процессе с учетом всех потерь составляет 88—90 % от массы металлической шихты.

3.9 Материальный и тепловой баланс кислородно-конвертерной плавки

Материальный баланс. В оптимальном случае, когда выход металла максимален (90%), а расход чугуна минимален (74%), расход чугуна на 1 т жидкой стали составляет (74:90) х 1000 = 822 кг. Учитывая, что жидкий чугун поступает с некоторым количеством доменного (миксерного) шлака, лом обычно содержит мусор и при разливке неизбежна некоторая потеря металла, для рассматриваемого случая минимальный фактический расход чугуна составляет ~ 830 кг/т и расход металлошихты (чугуна и лома) 1140-1150 кг/т литой стали. При плавке стали в мартеновских печах расход на 1 т литой стали металлошихты <1135 кг, а расход чугуна может быть снижен до < 500 кг. Таким образом, кислородно-конвертерный процесс отличается от мартеновского не только высоким потреблением чугуна, но и металлошихты в целом, т. е. большей емкостью главных видов материальных ресурсов.

Тепловой баланс. Сталь, выпускаемая из конвертера, должна быть нагрета до температуры 1600—1650 °С, в то время как заливаемый в кислородный конвертер чугун обычно имеет температуру 1250—1400 °С. Источником тепла для нагрева стали со шлаком, а также для восполнения потерь тепла с отходящими газами и через кожух конвертера является тепло, выделяющееся при окислении примесей чугуна.

Расчеты теплового баланса и практика показывают, что общее количество тепла, выделяющегося при окислении примесей чугуна при любом его составе, значительно превышает потребность в тепле для нагрева стали и шлака до температуры выпуска и для компенсации теплопотерь. В связи с этим при кислородно-конвертерной плавке обязательно применение охлаждающих добавок. Их количество определяется температурой чугуна, содержанием в нем кремния и других примесей, а также темпом работы конвертера, поскольку при удлинении пауз между продувками возрастают потери тепла в результате охлаждения конвертера.

В качестве охладителей можно использовать железную руду, стальной лом, агломерат, железорудные окатыши, известняк, доломит, известково-рудные брикеты.

Обычно в качестве охладителя применяют стальной лом. Избыточное тепло процесса расходуется при этом на его нагрев и расплавление (1420 кДж на 1 кг лома); расход лома доходит до 25—28 % от массы металлической шихты. Увеличение расхода лома снижает себестоимость стали, а также вызывает повышение выхода годного, так как лом содержит меньше, чем чугун примесей, окисляющихся при продувке. Достоинством лома считается также то, что он вносит мало вредных примесей, то есть не требует повышения расхода шлакообразующих.

Недостатком лома является то, что его завалку производят в начале плавки, в то время как выделение тепла происходит в течение всей продувки. В связи с этим начало продувки получается «холодным». Недостатком считают и то, что его охлаждающее воздействие не затрагивает непосредственно зоны максимальных температур в конвертере — подфурменной реакционной зоны, поскольку лом находится под слоем жидкого чугуна. Затраты времени на загрузку лома и возможность повреждения кусками лома футеровки конвертера также является недостатком этого охладителя.

Железная руда как охладитель применяется сравнительно редко. При использовании руды избыточное тепло расходуется на ее нагрев и восстановление железа из окислов; восстановленное железо несколько повышает выход годной стали. Охлаждающее воздействие руды в 3,0—3,8 раза выше охлаждающего воздействия равного количества лома; расход руды доходит до 8 %.

По сравнению с ломом руда как охладитель имеет ряд преимуществ: она обеспечивает охлаждение высокотемпературной подфурменной зоны; для загрузки руды не требуется останавливать продувку; содержащиеся в руде окислы железа ускоряют растворение в шлаке извести, т. е. ускоряют шлакообразование; наличие кислорода в руде снижает (на 10—15 %) расход газообразного кислорода.

Недостатки руды. Она вносит в шлак много SiO2, в связи с чем возрастает расход извести и количество шлака, что обычно вызывает уменьшение выхода годного. Кроме того, при большом расходе руды на плавку (> 5— 6 %) и ее введении одной порцией возрастает количество выбросов и снижается выход годного металла.

Применение в качестве охладителей агломерата, окатышей и брикетов оказывает такое же охлаждающее действие как и железная руда.

Основной причиной использования лома, а не руды в качестве охладителя является то, что лом заменяет значительное количество дорогостоящего чугуна.

При использовании в качестве охладителей известняка и доломита тепло расходуется на разложение содержания в них CaCO3 и MgCO3. Охлаждающая способность доломита и известняка близки к охлаждающей способности руды. Редкое использование этих охладителей связано с тем, что они не увеличивают выход годного металла.

3.10 Переработка лома в конвертерах

Основным недостатком конвертерных процессов является низкий расход лома в шихте, обычно составляющий не более 25-28% при средней доле лома в сталеплавильной шихте примерно ~ 45-50%.

Известны различные методы повышения доли лома в шихте конвертерных процессов, которые можно объединить в две основные группы: 1) методы, позволяющие лучше использовать тепло самого процесса (дожигание СО до СО, в полости конвертера, исключение применения твердых окислителей, уменьшение потерь тепла во время перевозок жидкого чугуна, остановок конвертера и т. д.); 2) методы дополнительного подвода тепла, прежде всего нагрева лома в полости конвертера или в специальных устройствах.

Дожигание СО в полости конвертера. Для проведения дожигания в верхнюю часть полости конвертера над ванной подают кислород (через двухъярусную фурму), обеспечивающий протекание реакции: СО + 1/2O2 = CO2; + 282 980 Дж/моль, тепло от которой передается ванне, что и позволяет увеличить расход охладителя — стального лома. Однако попытки использовать этот источник тепла показали, что реальное увеличение доли лома не превышает 10-15%, а стойкость футеровки конвертера резко снижается.

Подогрев лома в конвертере сжиганием твердого топлива (кокса, антрацита). Кусковой каменный уголь (антрацит) или кокс загружают в конвертер на стальной лом или после заливки чугуна и начала продувки.

При расходе угля около 1 % от массы шихты уменьшается расход чугуна на 2,5—3,5 % (от массы шихты), но в то же время возрастает длительность плавки, что снижает производительность конвертера примерно на 6 %. Недостатки – увеличение продолжительности плавки и наличие серы в топливе.

Вдувание пылевидного угля. Молотый каменный уголь или кокс вдувают в ванну в струе кислорода, подаваемого через фурму сверху или через донные фурмы. Тепло, выделяющееся при окислении вводимого углерода позволяет увеличить расход лома. Способ часто применяют в сочетании с подачей кислорода в верхнюю полость конвертера для дожигания СО до CO2 при такой комбинированной технологии доля стального лома в шихте может быть увеличена до 50 % и более. Недостаток – усложнение конструкции

Подогрев лома в конвертере сжиганием газообразного или жидкого топлива. Загруженный в конвертер стальной лом подогревают с помощью топливно-кислородной горелки, после чего заливают жидкий чугун и проводят плавку по обычной технологии. При этом достигают увеличения количества стального лома в шихте на 4—9 % (от массы шихты); длительность подогрева на разных заводах составляет 8—18 мин, расход природного газа 5—13 и кислорода на нагрев 15—20 м3/т стали.

Для повышения доли лома в шихте иногда применяют ферросилиций, карбиды кремния (SiC) и кальция (СаС2). Эти материалы, загружаемые с ломом, во время продувки окисляются со значительным тепловым эффектом. Однако они дороги и дефицитны, поэтому их систематическое применение бесперспективно.

Предварительный подогрев лома вне конвертера в простых устройствах (совках и ковшах) малоэффективен, поскольку в них удается нагреть лом только до 500-600°С, а сооружение специальных устройств, более совершенных в теплотехническом отношении, увеличивает капитальные и текущие затраты.

3.11 Конвертерные процессы с донной продувкой кислородом

Первые попытки замены воздушного дутья в бессемеровском и томасовском процессах не дали положительных результатов из-за отсутствия технологии продувки, обеспечивающей высокую стойкость днища конвертеров. Однако разработка способов донной продувки металла кислородом продолжалась, поскольку широкое промышленное применение процесса с верхней подачей дутья выявило его серьезные недостатки, к которым прежде всего относятся:

  1.  Высокие потери железа с отходящими газами, шлаком, выбросами и выносами.
  2.  Неполное и непостоянное от плавки к плавке усвоение вдуваемого кислорода ванной.
  3.  Большая дополнительная высота, требующаяся для размещения кислородных фурм.

Для исключения указанных недостатков разрабатывались возможности применения донного кислородного дутья. Задача состояла в том, чтобы предотвратить активное взаимодействие струй кислорода с металлом непосредственно у выхода из фурм, т.е. отодвинуть вглубь металла реакционную зону, имеющую очень высокую температуру (>2000°С) и значительное содержание оксидов железа, а поэтому вызывающую интенсивное разрушение (эрозию) днища.

Проводившиеся впоследствии в ряде стран исследования привели к разработке пригодного для промышленного использования метода введения кислорода снизу в виде струй, окруженных кольцевой защитной оболочкой из углеводородов. Кольцевая оболочка предотвращает контакт кислорода с чугуном у фурм и обеспечивает охлаждение околофурменной зоны.

Охлаждение околофурменной зоны происходит потому, что на выходе из фурмы протекает ряд эндотермических процессов: разложение углеводородов (CН4=С+2Н2-Q); растворение углерода в металле с поглощением тепла (С=[С]-Q); неполное сгорание углеводородов (CH4+1/2O2= CO+2{H2}- Q.

Отвод реакционной зоны вглубь металла происходит потому, что газ, будучи восстановителем, предотвращает окисление железа вдуваемым кислородом непосредственно у фурм.

При таких условиях в нижней части реакционной зоны не развивается очень высокая температура и не образуются оксиды железа, поэтому не наблюдается интенсивного износа фурм и днища уже при расходе топлива ~ 5 % от расхода кислорода (максимальный расход ~ 10 %).

В качестве источника углеводородов для создания защитной оболочки вокруг кислородной струи в конвертер подают тонкий слой природного газа (его основу составляет метан СН4), пропана (C3H8) и иногда жидкого топлива (сложные углеводороды типа СmНn). Расход природного газа составляет 6—8, пропана около 3,5 % от расхода кислорода.

Устройство конвертера

Конвертеры для донной кислородной продувки имеют отъемное днище, а в остальном схожи с конвертерами, применяемыми при верхней продувке кислородом. В днище в зависимости от емкости конвертера устанавливают от 7 до 22 фурм. Каждая фурма состоит из двух концентрически расположенных труб; по средней трубе из нержавеющей стали или меди с внутренним диаметром 24—50 мм подают кислород, внешняя труба из нержавеющей стали образует кольцевой зазор толщиной 0,5—2 мм вокруг наружной. Через зазор подается защитная среда — газообразные или жидкие углеводороды.

Технология плавки – отличительные особенности

Шлакообразование при донной подаче дутья и использовании кусковой извести ухудшается вследствие снижения температуры шлака и содержания в нем оксидов железа. Снижение температуры шлака вызвано перенесением высокотемпературной реакционной зоны из верхних горизонтов ванны в объем металла. В этих условиях температура шлака близка к температуре металла, которая в первой половине плавки < 1500°С.

Уменьшение содержания оксидов железа связано с интенсификацией перемешивания металла и шлака и более восстановительным характером газовой фазы (содержание СО2 в газовой фазе при верхнем дутье - 10 %, а при донной не более 3-4%). В этих концентрация оксидов железа обычно не превышает 5-6% (при верхней продувке 15-20%).

Поэтому нормальная выплавка углеродистой стали в конвертерах с донной подачей кислорода возможна только при использовании порошкообразной извести, вдувая ее также снизу в струе кислорода. В этом случае создаются благоприятные условия для шлакообразования, особенно в начальной стадии этого процесса.

Поведение примесей

За время продувки окисляется избыточный углерод, кремний, часть марганца; формируется шлак, в который удаляются фосфор и сера; расплавляется стальной лом; за счет тепла реакций окисления нагревается металл. Вначале, как и при продувке сверху, преимущественно окисляются кремний и марганец. Вместе с тем для процесса характерен ряд отличий, связанных прежде всего с тем, что при подаче дутья через несколько фурм снизу обеспечивается резкое усиление интенсивности перемешивания ванны.

В этих условиях существенно увеличивается поверхность контакта металл—газ и металл-шлак, что ведет к снижению окисленности шлака. Поэтому содержание FeO в шлаке по ходу продувки не превышает 5—6 %.

Из-за низкого содержания FeO в шлаке реакция окисления марганца [Мn] + (FeO) = (MnO) + Fe получает ограниченное развитие и количество окисляющегося за время продувки марганца (30-40 %) меньше, чем при верхней продувке (70-80%).

Окисление фосфора. При донной подаче дутья с применением порошкообразной извести дефосфорация протекает несколько полнее, чем при верхней подаче дутья.

Удаление серы. При донной подаче дутья с порошкообразной известью возрастает коэффициент распределения серы между шлаком и металлом (при В= 3-3,5 Lg= 6-8, может достигать 10), и доля серы, переходящей в газовую фазу (15-20%), поэтому общая степень десульфурации (переход в шлак и газовую фазу) увеличивается и обычно составляет 50-60% (при верхней подаче дутья 30-50%).

Особенностью процесса является то, что водород, образующийся в результате термического разложения вдуваемых углеводородов, растворяется в металле и в конце продувки содержание водорода достигает 6—9 см3 на 100 г металла, что недопустимо для сталей многих марок. Для удаления избыточного водорода перед выпуском проводят кратковременную (в течение 10—60 с) продувку металла аргоном; содержание водорода при этом снижается до 2—4 см3 на 100 г.металла.

Длительность продувки в зависимости от интенсивности подачи кислорода изменяется от 8 до 14 мин, удельный расход кислорода 45-55 м3/т, природного газа 4—5 м3/т, пропана 1,5 м3/т, жидкого топлива 2—3 л/т. Расход азота на продувку металла и на подачу в межплавочные периоды через фурмы с целью их охлаждения достигает 15—20 м3/т.

Тепловой баланс плавки при донной подаче дутья, несмотря на введение некоторого количества топлива, ухудшается. Это связано в основном с тем, что сжигание топлива происходит неполно, выделяющееся тепло обычно не компенсирует затраты тепла на разложение углеводородов; кроме того, уменьшается окисление железа. Вследствие этого доля лома в шихте при донной подаче дутья снижается на 2-5% по сравнению с верхней подачей.

3.12 Сравнение процессов с верхней и донной продувкой кислородом

Конвертерный процесс с донной подачей кислорода по сравнению с верхней подачей дутья, обладая значительно лучшими условиями взаимодействия дутья с ванной, имеет следующие основные преимущества:

  1.  в 3—5 раз уменьшаются потери железа с отходящими газами, поскольку наиболее крупные частицы бурого дыма (Fе2О3) поглощаются при прохождении через слой металла и шлака
  2.  почти отсутствуют потери с выбросами из-за более спокойного хода продувки;
  3.  в 1,5—2 раза уменьшаются потери железа со шлаком вследствие меньшего содержания в шлаке окислов железа;
  4.  увеличивается выход жидкой стали на 1,5-2% из-за  п.1-3;
  5.  повышается и стабилизируется степень усвоения кислорода ванной, что облегчает управление процессом;
  6.  появляется возможность повышения интенсивности продувки, следовательно, производительности конвертера на 5-10%;
  7.  уменьшение расхода кислорода, объясняемое лучшим (на 5—10 %) его использованием в связи с тем, что окисляется меньше железа и меньшее количество углерода окисляется до СО2 (в отходящих газах содержится <5 % СО2, тогда как при продувке сверху до 10—15 %);
  8.  уменьшение количества окисляющегося при продувке марганца, что ведет к экономии ферромарганца;
  9.  более высокая степень дефосфорации и десульфурации;
  10.  уменьшается поглощение азота дутья вследствие понижения температуры в зоне взаимодействия кислорода и металла;
  11.  создаются благоприятные условия для организации вдувания в ванну различных инертных газов (аргона, азота) и порошкообразных материалов (извести, графита, угля и др.).
  12.  уменьшение высоты конвертерной установки из-за отсутствия вертикально-перемещаемых фурм, что упрощает сооружение конвертерного цеха;.

Вместе с тем, для процесса с донной продувкой кислородом характерны следующие недостатки:

  •  необходимо применение порошкообразной извести, что требует специального оборудования для ее помола и вдувания;
  •  необходима продувка металла инертным газом для удаления водорода, а также подача через фурмы инертного газа или воздуха в межплавочные периоды для охлаждения фурм;
  •  усложняется конструкция и эксплуатация днища с системой подвода кислорода, защитной среды, инертного газа и измельченной извести;
  •  возникают простои конвертера при замене днищ, которая длится 8—20 ч;
  •  на 2—5 % уменьшается количество перерабатываемого лома, что связано с затратой тепла на разложение углеводородов и уменьшением прихода тепла от окисления железа (в шлак) и в результате уменьшения доли углерода, окисляющегося до CO2;
  •  необходимы специальные устройства для улавливания дыма и выносимых из конвертера капель металла при его наклоне.

Конвертерный процесс с донным топливно-кислородным дутьем хотя и имеет ряд преимуществ по сравнению с процессом с верхней подачей дутья, однако его применение целесообразно лишь в специфических условиях: при переделе высокофосфористых и ванадийсодержащих чугунов, а также при выплавке особонизкоуглеродистой стали (< 0,05% С) из любого чугуна. При переделе обычных чугунов на сталь с нормальным содержанием углерода предпочтительна верхняя подача дутья, поскольку можно работать на кусковой извести и обеспечить стойкость футеровки конвертера на порядок выше.

3.13 Конвертерные процессы с комбинированной продувкой

Желание совместить преимущества конвертерных процессов с верхней и донной продувкой послужило основанием для разработки в последние годы технологии конвертерного процесса с комбинированной продувкой сверху и снизу.

Конвертерный процесс с комбинированной (верхней и донной) подачей кислорода обладает наибольшими технологическими возможностями, но по конструкции агрегата и системы его обеспечения является самым сложным. Для максимального использования преимуществ верхнего и донного дутья необходимо обеспечить подачу в конвертер: сверху - кислорода, кусковой извести и других флюсов; через дно - кислорода, защитного топлива, нейтрального газа, воздуха (для защиты фурм от затекания и забивания в межпродувочные периоды) и порошкообразной извести.

Получает распространение ряд разновидностей комбинированной продувки, которые помимо подачи кислорода через фурму сверху могут включать:

  •  вдувание инертных газов через пористые огнеупорные элементы в днище
  •  вдувание через донные фурмы смеси кислорода и инертного газа в кольцевой оболочке из углеводородных или нейтральных газов;
  •  вдувание через донные фурмы воздуха в кольцевой оболочке из инертных газов;
  •  подача части кислорода через донные фурмы в кольцевой оболочке из углеводородных или нейтральных газов
  •  перечисленные выше способы с дополнительным вдуванием извести через днище.

Наибольшее распространение получил конвертерный процесс с верхней подачей кислорода и донной подачей нейтрального газа через фурмы. Такая технология значительно проще, чем с комбинированной подачей кислорода, но позволяет сохранить основное преимущество донной продувки - хорошее перемешивание ванны и связанные с ним технологические преимущества. Донные фурмы изготавливают из коррозионностойкой стали в виде одной трубы или двух (труба в трубе с заглушенной внутренней трубой). Их диаметр и число зависит от принятой интенсивности продувки. Удельная интенсивность подачи нейтрального газа может изменяться в широких пределах: от 0,01-0,10 м3/т-мин до 3-4 м3/т-мин). Для увеличения расхода лома верхнюю фурму выполняют двухъярусной, что обеспечивает дожигание СО в полости конвертера. В качестве нейтрального газа обычно используют азот, поскольку инертный газ (аргон) дорог. Продувка металла азотом в течение всей плавки приводит к повышению содержания его в металле, которое зависит от интенсивности донной продувки. При минимальной интенсивности продувки поглощение азота незначительно и возможно достижение содержания его в готовой стали не более 0,003-0,004%. При необходимости снижения содержания азота в готовом металле в конце плавки ванну продувают аргоном. В межпродувочные периоды донные фурмы обычно переводят на воздушное дутье, поскольку оно дешевле азота.

Донная подача нейтрального газа может осуществляться также через пористые огнеупорные блоки. Направленные каналы в огнеупорных блоках имеют небольшой диаметр (<2 мм), металл и шлак в них не затекают, поэтому продувку нейтральным газом можно вести не в течение всей плавки, а тогда, когда это необходимо. Обычно продувку нейтральным газом начинают за несколько минут до окончания кислородной продувки и заканчивают через несколько минут после окончания продувки кислородом. При удельной интенсивности продувки до 0,2-0,3 м3/т-мин) обеспечивается снижение окисленности шлака и металла, при необходимости глубокое обезуглероживание, а также дополнительная дефосфорация и десульфурация металла.

4 Выплавка стали в подовых сталеплавильных агрегатах

Еще в начале 18 века была предложена идея выплавке стали в отражательных печах, которая воплотилась в 1784 году с появлением так называемой пудлинговой печи. Однако, в таких печах сжигание топлива даже с высокой теплотой сгорания при подаче холодного воздуха не могло обеспечить температуру в плавильном пространстве более 1420—1460 °С. При этой температуре только металл, содержащий >1,5 % С, может находиться в жидком состоянии, но для разливки его в слитки нужно иметь более высокую температуру (на 60—80 °С). Недостатком металлургической техники того времени было также низкое качество огнеупорных материалов. В связи с этим до середины 19 века основным способом получения высокоуглеродистой стали в ничтожно малых количествах был тигельный процесс.

Получить сталь в жидком состоянии путем сплавления чугуна и скрапа впервые удалось П. Мартену, использовавшему тепло отходящих из плавильного пространства продуктов сгорания для подогрева газообразного топлива и воздуха, расходуемого для его сжигания (принцип регенерации тепла).

Таким образом, появилась возможность переплава отходов самого металлургического производства (стальной скрап), которые невозможно перерабатывать в бессемеровских конвертерах (1855г).

В конце пятидесятых годов в СССР и в некоторых других странах появился и был реализован новый метод использования тепла отходящих из плавильного пространства продуктов сгорания топлива для нагрева скрапа. Так появился новый подовый сталеплавильный агрегат — двухванная печь.

4.1 Принцип работы мартеновской печи

Для того, чтобы выпустить из печи и разлить сталь, в зависимости от химического состава и способа разливки, ее следует нагреть до 1600—1650 °С. Металл может быть нагрет до этой температуры, если продукты сгорания факела имеют еще более высокую (на 100—150 °С) температуру.

Таким образом, температура факела должна быть не менее 1750—1800 °С. Теоретическая температура горения любого топлива определяется уравнением

tт = (Qт + Qгф)/Cпс Vпс,

где Qт — теплота сгорания топлива;

Qгф — физическое тепло нагретых воздуха и горючих газов;

Vпс — объем продуктов сгорания;

Cпс — их средняя теплоемкость.

Из уравнения следует, что повысить теоретическую температуру факела можно при использовании топлива с высокой теплотой сгорания (мазута, природного газа), повышении температуры подогрева воздуха и уменьшении объема продуктов сгорания Последнее достигается обогащением кислородом воздуха для сжигания топлива, что приводит к уменьшению количества балластного азота в продуктах сгорания. Эта идея широко применяется в настоящее время на большинстве отечественных заводов. Содержание кислорода в воздухе увеличивают от 21 до 25—30 %. Роль подогрева воздуха в тепловой работе печи при этом уменьшается, хотя воздушные регенераторы остаются.

4.2 Устройство мартеновской печи

Мартеновская печь состоит из верхнего и нижнего строений (рисунок 7). Верхнее строение печи, расположенное над рабочей площадкой цеха, состоит из рабочего пространства, головок и вертикальных каналов Плавильное (или рабочее) пространство ограничено передней стенкой с завалочными (рабочими) окнами, задней стенкой с выпускным отверстием, подом и сводом. В торцах плавильного пространства расположены головки, служащие для подвода топлива и воздуха и отвода из плавильного пространства продуктов сгорания. Головки соединяются с нижним строением печи вертикальными каналами. Нижнее строение печи расположено под рабочей площадкой цеха и состоит из шлаковиков, предназначенных для отделения от дымовых газов частичек уносимых ими из плавильного пространства шлака и пыли, регенеративных камер и боровов с перекидными клапанами. В регенераторах осуществляется подогрев воздуха до поступления в плавильное пространство Тепло для их нагрева отдают дымовые газы, периодически проходящие через регенераторы Направление движения дымовых газов, воздуха и топлива регулируется поочередным открытием тех или иных перекидных (пусковых) клапанов.

Проходя через предварительно нагретую насадку регенератора воздух нагревается до 1000—1200 °С и в нагретом состоянии через «головку» попадает в печь.

В рабочем пространстве печи происходит смешение топлива с воздухом и сгорание его с образованием факела пламени, имеющего температуру 1800—1900 °С

Продукты сгорания (дым) с температурой 1650—1700 °С поступают в каналы противоположной головки, затем в вертикальные каналы, в шлаковики и регенераторы (с температурой 1500—1550 °С).

  1.  

По истечении определенного промежутка времени (5—20 мин) после нагрева насадки регенератора и соответствующего охлаждения противоположной насадки регенератора производится изменение направления движения воздуха на обратное при помощи перекидных клапанов. Операцию изменения направления газов с помощью клапанов называют «перекидкой клапанов».

Из рабочего пространства печи дымовые газы выходят с температурой 1680—1750 °С, из шлаковика в регенератор — с температурой 1500—1550 °С. Пройдя насадку регенератора, они охлаждаются до 500—700 °С. Обычно стремятся использовать тепло отходящих газов, направляя их по системе боровов в котел-утилизатор. Если по каким-либо причинам котел-утилизатор не установлен или находится на ремонте, дымовые газы по боровам направляют в трубу.

4.3 Конструкция отдельных элементов мартеновской печи

Рабочее пространство печи

Рабочее пространство мартеновской печи ограничено сверху сводом, снизу — подом (или «подиной»). На границе задней стенки и подины предусмотрено отверстие для выпуска плавки (сталевыпускное отверстие). В передней стенке печи имеются проемы — завалочные окна, через которые в рабочее пространство загружают твердую шихту и заливают (по приставному желобу) жидкий чугун.

Из всех элементов печи рабочее пространство находится в наиболее тяжелых условиях — в нем идет плавка стали. Во время завалки твердой шихты огнеупорные материалы, из которых изготовлено рабочее пространство, подвергаются резким тепловым и механическим ударам, во время плавки они подвергаются химическому воздействию расплавленных металла и шлака; в рабочем пространстве максимальная температура.

В соответствии с этим к огнеупорным материалам рабочего пространства предъявляют высокие требования: а) высокая огнеупорность; б) химическая устойчивость против воздействия шлака, металла и печных газов; в) достаточная механическая прочность при высоких температурах; г) хорошая термостойкость при колебаниях температуры.

По химическим свойствам применяемые огнеупорные материалы делят на: а) кислые — динасовый кирпич, кварцевый песок; б) основные — магнезитовый кирпич, магнезитовый порошок, доломит; в) нейтральные (со свойствами амфотерных окислов) — шамот, хромомагнезит, магнезитохромит, высокоглиноземистый шамот, форстерит.

Подина печи

Огнеупорные материалы, применяемые при изготовлении подины мартеновской печи, должны соответствовать типу шлака, под которым проводится плавка (рисунок 8). В противном случае в результате энергичного взаимодействия шлака с огнеупорным материалом подина печи ошлакуется, то есть перейдет в шлак и печь выйдет из строя.

1 — наварка (кварцевый песок); 2 – наварка (магнезитовый порошок или молотый обожженный доломит); 3 — магнезитовый кирпич; 4 — динасовый кирпич; 5 — стальной лист; 6 — тепловая изоляция (пористый шамот); 7 — шамотный кирпич

Рисунок 8 - Устройство кислого и основного подов мартеновской печи

Задняя и передняя стенки мартеновской печи работают (особенно в нижней части) почти в тех же условиях, что и подина, так как они также соприкасаются с жидким металлом и шлаком. Заднюю и переднюю стенки кислой мартеновской печи выкладывают из динасового кирпича, основной мартеновской печи — из магнезитового.

Изношенные участки футеровки (особенно зону шлакового пояса) ремонтируют после каждой плавки (эту операцию называют заправкой печи): на изъеденные места кислой подины набрасывают песок, а основной подины — магнезитовый или доломитовый порошок. Заправке подвергают также и торцовые части подины, прилегающие к головкам печи; их называют откосами.

Свод печи

Свод мартеновской печи практически не соприкасается со шлаком, поэтому его можно изготовлять из кислых и основных огнеупорных материалов независимо от типа процесса. Своды мартеновских печей изготовляют из динасового или термостойкого магнезито-хромитового кирпича.

Динасовый кирпич при высоких температурах (до 1700 °С) сохраняет достаточную прочность и повышенное сопротивление сжатию. Во время эксплуатации динасовые кирпичи свода свариваются в монолит, что позволяет выполнять его самонесущим (в виде акрки) и гарантирует его надежность даже в случае, если какой-либо кусок свода упадет. Однако при нагреве свыше 1700 °С динасовый кирпич быстро оплавляется; кроме того, он сильно разъедается плавильной пылью, состоящей из окислов железа (образуются легкоплавкие силикаты железа).

Магнезитохромитовый кирпич характеризуется более высокой огнеупорностью (допустимая температура нагрева 1800 °С), что способствует повышению производительности печи. Стойкость свода из магнезито-хромитового кирпича в 2—3 раза выше, чем из динасового. Особенности эксплуатации свода из магнезито-хромитового кирпича: а) кирпичи плохо свариваются и не образуют монолита; б) коэффициент расширения магнезито-хромитового кирпича выше, чем динасового, в результате чего при разогреве арки свода наружные швы раскрываются, а на внутренней стороне возникают высокие напряжения сжатия, что приводит к сколу внутренней части свода; в) повышенная теплопроводность и большие неплотности кладки (раскрытые швы) обусловливают более высокие (почти в два раза) потери тепла с 1 м2 площади свода; г) объемная масса магнезитохромитового кирпича в 1,5 раза больше, чем динасового. Все это исключает возможность применения обычного арочного свода. Свод приходится выполнять распорно-подвесным с креплением и прокладками между кирпичами, а это усложняет и удорожает конструкцию.

Однако возможность повысить температуру в печи при использовании магнезитохромитового свода, а также увеличить срок службы свода делает устройство сложной системы подвесок рентабельным, поэтому своды такого типа нашли широкое применение.

Стойкость магнезитохромитового свода составляет 500—1000 плавок (динасового 200—350 плавок).

Головки печи

Головки служат для подвода топлива и воздуха и отвода из плавильного пространства продуктов сгорания. От того, с какой скоростью вводят в рабочее пространство воздух и топливо и насколько хорошо струи топлива и воздуха перемешиваются, зависят форма и ряд других характеристик факела, а от факела зависит и вся работа печи.

Головки должны обеспечить: 1) хорошую настильность факела по всей длине ванны (чтобы максимум тепла передать ванне и минимум — своду и стенкам); 2) минимальное сопротивление при отводе продуктов сгорания из рабочего пространства; 3) хорошее перемешивание топлива и воздуха для полного сжигания топлива в рабочем пространстве печи.

Чтобы удовлетворить первому и третьему требованиям, сечение выходных отверстий должно быть малым (чтобы скорости ввода воздуха и топлива были максимальными); для удовлетворения второго требования сечение, наоборот, должно быть максимальным. Поэтому, в зависимости от условий работы,  выбирают промежуточный вариант.

Шлаковики

Отходящие из рабочего пространства печи дымовые газы проходят через головку и по вертикальным каналам попадают в шлаковики (рисунок 9).

1 - вертикальные каналы;  2 — шлаковик;  3 — насадки  регенераторов,  4 — подвесной   свод   наднасадочного   пространства;   5 — поднасадочные   пространства

Рисунок 9 - Устройство шлаковиков и регенераторов мартеновской печи

Шлаковики служат для улавливания плавильной пыли и шлаковых частиц, уносимых продуктами сгорания из рабочего пространства, и тем самым предохраняют насадки регенератора от засорения. Сечение шлаковика гораздо больше сечения вертикального канала, поэтому при попадании дымовых газов в шлаковик их скорость резко уменьшается и, кроме того, меняется направление движения газов. Это приводит к тому, что значительная часть (50—75 %) плавильной пыли оседает в шлаковиках, причем оседает крупная пыль, более мелкие фракции в значительной степени уносятся в трубу (10—25 % пыли оседает в насадках регенераторов).

На пути движения дымовых газов плавильная пыль, содержащаяся в них, реагирует с материалами кладки. Это обстоятельство приходится учитывать при выборе материалов для кладки вертикальных каналов и шлаковиков.

Почти вся пыль представляет собой основные окислы (в том числе 60—80 % окислов железа). Если вертикальные каналы и шлаковики футерованы динасовым кирпичом, то основные окислы, из которых состоит пыль, энергично взаимодействуют с кислым материалом футеровки с образованием легкоплавких силикатов железа. Стойкость футеровки оказывается недостаточной и, кроме того, оседающая в шлаковиках пыль образует плотный монолит, который во время ремонта очень трудно извлекать.

В связи с этим для кладки вертикальных каналов и шлаковиков часто применяют термостойкий магнезитохромитовый кирпич.

Регенераторы

Из шлаковиков отходящие газы при температуре 1500— 1550 °С попадают в насадки регенераторов (рисунок 9).

Регенераторы должны обеспечивать более или менее постоянную высокую температуру подогрева газа и воздуха. В наиболее тяжелых условиях работают верхние ряды насадок, поскольку в этой части температура и содержание пыли наиболее высоки. Поэтому верхние ряды насадок выкладывают из термостойкого магнезитохромитового кирпича. Нижние ряды насадок работают при температурах менее 1000—1200 °С, поэтому их выкладывают из более дешевого и в то же время прочного шамотного кирпича.

Из поднасадочного пространства отходящие газы при температуре 500—700°С попадают в борова, которые предназначены для подвода к регенераторам газа, воздуха и отвода от них продуктов сгорания к трубе или к котлу-утилизатору. Кладка боровов обычно состоит из двух слоев: внутреннего, выполняемого из шамотного кирпича, и внешнего — из обычного красного кирпича.

4.4 Основные особенности и разновидности мартеновского процесса

Мартеновский процесс возник как способ получения стали путем сплавления лома и чугуна на подине отражательной печи. Это предопределило главную его особенность - недостаток собственного тепла процесса для проведения плавки. Для плавления твердых шихтовых материалов и нагрева жидкого металла и шлака до заданной температуры, а также для компенсации значительных тепловых потерь, вызываемых большой продолжительностью плавки, недостаточно физического и химического тепла шихтовых материалов.

Сгорание топлива должно происходить в пределах рабочего пространства, иначе оно заканчивается в вертикальных каналах и регенераторах, что в значительной степени снижает стойкость этих элементов печи и повышает расход топлива. Для того, чтобы сгорание топлива завершилось в рабочем пространстве печи, расход воздуха должен превышать теоретически необходимое количество для полного сгорания, поэтому коэффициент избытка воздуха составляет  обычно 1,15-1,20. Продукты сгорания любого топлива будут состоять из окислительных газов СО2, Н2О, О2 и некоторого количества нейтрального азота N2. Таким образом, характер атмосферы мартеновской печи во все периоды плавки окислительный. Это одна из особенностей мартеновского процесса.

Другой особенностью технологии мартеновской плавки является то, что тепло к ванне поступает сверху, а отводится снизу через подину, поэтому температура шлака выше, чем металла, и по глубине ванны имеется различие в температуре металла. Толщина шлака в мартеновских печах колеблется от 50 до 500 мм, глубина ванны металла — от 500 до 1500 мм (в зависимости от емкости и конструкции печи). При этом выравниванию температуры по глубине ванны способствуют пузырьки СО, выделяющиеся в результате окисления углерода и приводящие к «кипению» ванны. Однако некоторый перепад температур по глубине ванны все же сохраняется, особенно между шлаком и металлом. В начале доводки этот перепад составляет 70—100, а в конце 20—50 °С. По длине печи температура металла также неодинакова. Под факелом температура металла несколько выше, чем у отводящих головок.

Четвертая особенность технологии мартеновской плавки — участие пода печи в протекающих процессах. В отличие от плавки в конвертерах, продолжающейся всего 15—30 мин, плавка в мартеновской печи продолжается много часов. Поэтому влияние взаимодействия металла с подиной оказывается очень ощутимым.

Пятая особенность технологии мартеновской плавки заключается в том, что жидкий металл все время находится под слоем шлака (шлак примерно вдвое легче металла). Практически все вводимые в печь добавки попадают на шлак или проходят в металл через шлак. Кислород из атмосферы печи в металл переходит также через шлак. Если учесть, что тепло от факела к металлу также передается через шлак, то становится понятной огромная роль шлака в мартеновском процессе. По существу руководство ходом плавки заключается в том, что меняют состав, температуру и консистенцию шлака и таким образом добиваются получения металла нужного состава и качества.

Непосредственное окисление металла (железа и его примесей) кислородом газовой фазы наблюдается в мартеновских процессах только в период завалки, прогрева и плавления шихты, а также может иметь место в период интенсивного кипения, когда капли металла выбрасываются в газовую фазу. По мере окисления железа и входящих в состав шихты примесей железа образуется шлак, обладающий окислительными свойствами. Он становится передаточным звеном в системе газовая фаза-металл.

Процесс перехода кислорода из газовой фазы в металл происходит непрерывно. За плавку ванна поглощает от 1 до 3 % кислорода от массы металла. Соотношение между поступающим кислородом и потребностями в нем может быть различным. Это различие главным образом зависит от доли чугуна в шихте и определяет основные разновидности (варианты) мартеновского процесса: рудный, скрап-рудный процесс, скрап-процесс и скрап-угольный мартеновский процесс.

В том случае, когда поступление кислорода из газовой фазы больше потребностей в нем, избыточный кислород должен быть связан карбюратором, и процесс называется карбюраторным (скрап-угольным). Если поступление кислорода равно потребностям, в этом случае процесс называется скрап-процессом. Когда потребность в кислороде значительно больше количества, поступающего из обязательных источников, то недостающий кислород вводят с железной рудой или ее заменителями в самом начале процесса (в завалку). Такой процесс называется скрап-рудным. При использовании 100% чугуна процесс называется рудным.

Скрап-рудный процесс является одним из самых распространенных вариантов мартеновского процесса. Особенность его состоит в том, что основной составляющей металлической части шихты является в основном жидкий чугун. Доля чугуна в шихте колеблется в основном в пределах 50-70%. Для ускорения (интенсификации) окисления элементов шихтовых материалов в печь загружают железную руду, кислород которой расходуется на окисление части примесей. Загружается руда до заливки чугуна (обычно под слой лома) и по ходу плавки (в период полировки). Благодаря восстановлению железа руды увеличивается выход годного. Если при высоком расходе чугуна в мартеновских печах процесс вести без интенсификации твердыми окислителями, то продолжительность плавки увеличивается вследствие недостаточной скорости поступления кислорода из газовой фазы печи.

Скрап-процесс обычно распространен на заводах, не имеющих доменного производства. В этом случае основной составляющей металлической шихты является металлический лом. Доля чугуна, твердого или редко жидкого, обычно составляет 25-45%. Железную руду, если и дают, то в незначительных количествах (обычно 1-2%) только по ходу плавки (в период доводки), а не в период завалки. Таким образом, основным источником кислорода является газовая фаза.

Карбюраторный (скрап-угольный) процесса представляет работу печи на малом расходе (10-15 %) чугуна или только на ломе. При этом содержание углерода в исходной шихте оказывается значительно меньше, чем требуется для нормального ведения процесса, поэтому в шихту вводят углеродсодержащие материалы (карбюраторы), которыми обычно являются антрацит, кокс, графит, каменный или древесный уголь и т. п.

4.5 Основные периоды мартеновской плавки и их значение

Процесс выплавки стали в мартеновской печи при любой разновидности его включает следующие основные периоды: заправка печи; завалка и прогрев твердых шихтовых материалов; заливка жидкого чугуна (завалка твердого чугуна) и плавление; доводка плавки; раскисление и легирование металла; выпуск металла и шлака.

Заправка печи производится для восстановления изношенных за время плавки участков наварки передней и задней стенок и откосов. Лучшее приваривание заправочных материалов наблюдается при высокой температуре рабочего пространства, поэтому заправка задней стенки выше уровня продуктов плавки производится в период доводки предыдущей плавки; заправка откосов на уровне шлака и ниже производится во время выпуска плавки.

Завалка твердых шихтовых материалов с помощью специальных мульдозавалочных машин: стальной скрап, железную руду, а также твердый чугун. Порядок завалки и расположение шихты в печи влияют на скорость плавления шихты, шлакообразование и стойкость печи. При работе скрап-рудным процессом завалка осуществляется в следующем порядке. На подину равномерным слоем загружают часть железной руды (агломерата, окатышей), затем слой известняка (извести) и оставшуюся руду. Такой порядок завалки предотвращает приваривание известняка к подине и обеспечивает образование в начале плавки железистого шлака, в котором в дальнейшем относительно легко растворяется известняк или известь. Во время и после завалки руду и известняк прогревают, по крайней мере для полного удаления влаги. При этом на печах большой вместимости обычно сыпучие подвергают перемешиванию (шуровке).

После завалки и прогрева железной руды и известняка загружают лом, располагая мелкий лом внизу, крупный вверху. Твердый чугун или отходы (лом) чугуна загружают поверх лома.

При работе скрап-процессом на подину загружают легковесный лом, поверх которого загружают известняк (8-10 %). Затем заваливают остальной лом. Поверх лома загружают чугун. При скрап-угольном процессе порядок завалки такой же, что и при скрап-процессе, но в слое лома располагают слой карбюратора.

Прогрев. Для обеспечения успешного плавления и уменьшения его длительности необходим прогрев шихтовых материалов, особенно при скрап-рудном процессе. Продолжительность прогрева зависит от многих факторов: теплового режима работы печи, скорости завалки, количества загружаемых материалов (лома) и т.д. Для сокращения периода прогрева сыпучие загружают послойно и перемешивают для вскрытия непрогретой массы. Для повышения поглощения тепла шихтой во время прогрева наверх загружают более крупную металлическую шихту, имеющую большую теплопроводность. Температура нагрева лома, по крайней мере верхних его слоев, должна быть не ниже температуры затвердевания чугуна (1250-1350°С)

В случае заливки чугуна на недостаточно прогретую шихту происходит его "закозление". Это приводит к существенному увеличению продолжительности периода плавления, так как одновременно ухудшается и теплопередача. Кроме того, во время неактивного состояния ванны в шлаке накапливается большое количество оксидов железа, при нагреве чугуна до жидкоподвижного состояния это может привести к выбросам шлака и даже металла из печи из-за интенсивного окисления углерода кислородом FeO. Перегрев шихты также недопустим, так как при заливке жидкого чугуна наблюдается бурная реакция окисления углерода, приводящая к выбросам шлака и металла из печи. После прогрева шихтовых материалов в печь заливают жидкий чугун.

Заливка жидкого чугуна осуществляется при помощи съемного или стационарного желоба. Продолжительность заливки чугуна определяется организационными возможностями и обычно составляет 15-30 мин. Чугун необходимо заливать медленно, иначе возможны бурное окисление углерода чугуна и выбросы металла и шлака из печи.

Плавление как самостоятельный период плавки начинается после заливки жидкого чугуна. Основной задачей этого периода являются расплавление металла и нагрев его выше температуры плавления (линии ликвидус) на 40-60°С, а также предварительное рафинирование металла.

Создание в период плавления оптимальных шлакового режима и баланса кислорода позволяет в этот период провести основную часть рафинирования металла, например, во многих случаях обеспечить требуемую степень дефосфорации его. Кроме фосфора, в период плавления окисляются и другие примеси углерод, кремний и марганец, а также может иметь место значительное окисление железа. Продолжительность плавления, кроме вместимости и тепловой мощности печи, зависит от шлакового режима периода плавления, количества чугуна в шихте, температуры жидкого чугуна и степень нагрева твердых шихтовых материалов, особенно лома.

При работе на шихте, содержащей значительное количество жидкого чугуна (> 50%), и ведении процесса в печах большой вместимости удаление шлака из печи в период плавления является важным фактором уменьшения продолжительности плавления. В этот период должно быть удалено максимально возможное количество шлака для уменьшения толщины слоя шлака в печи и улучшения теплопередачи от факела к ванне. Это вызывает снижение расхода известняка при хорошей дефосфорации и десульфурации металла. Уменьшение расхода известняка связано с тем, что основность шлаков, спускаемых в период плавления, мала (0,5-1,0).

Образующаяся в результате окисления углерода окись углерода вспенивает шлак и он начинает вытекать, «сбегать» из печи. Шлак, стекающий из печи во время плавления после заливки жидкого чугуна, называют «сбегающим» первичным шлаком. Состав этого шлака характеризуется низкой основностью и высоким содержанием FeO и МnО (если в чугуне содержится больше 1 % Мп). Железистые шлаки и пониженная температура благоприятствуют дефосфорации. Фосфор в этих шлаках находится главным образом в виде (FeO)3P2O5. Средний состав первичного сбегающего шлака следующий, %: SiO2 20—35; А12О3 3—5; FeO 25—35; Fe2O3 3—5; CaO 12—20; MgO 5—9; МnО 15—35; P2O5 2—4.

Со сбегающим шлаком из печи удаляется значительное количество нежелательных окислов SiO2 и Р2О5, а вместе со шлаком уходит также большое количество окислов железа и марганца. Поэтому в тех случаях, когда в шихте мало серы и фосфора, сбегающий шлак стараются задержать в печи и уменьшить тем самым потери металла. Количество сбегающего шлака составляет 8—10 % от массы металла (50—70 % от всего образующегося во время плавления шлака). Спуск шлака продолжается почти до полного расплавления шихты.

Обычно продолжительность периода плавления при работе на жидком чугуне 2-3 ч. При работе на твердом чугуне период плавления продолжительнее (3-4 ч), так как для нагрева чугуна необходим дополнительный расход тепла.

За период плавления полностью окисляется кремний, почти полностью марганец и большая часть углерода (30-40%)

Состав шлака, сформировавшегося к моменту расплавления и после него, имеет обычно следующий состав: 35—45 % СаО, 20—25 % SiO2, 10—15 % FeO, 13—17 % МnО.

Доводка плавки для различных вариантов мартеновского процесса проводится примерно по одной схеме. Задача этого периода состоит в окончательном рафинировании металла и дополнительном нагреве ванны. Доводка обычно состоит из двух стадий: полировки (рудного кипения) и чистого (свободного) кипения.

Полировка - это период наводки шлака для обеспечения требуемой степени дефосфорации и десульфурации металла. Для этого сначала скачивают из печи шлак, а затем присаживают шлакообразующие материалы: известь, боксит, плавиковый шпат и т. д.

Скачивание шлака проводят следующим образом. После расплавления ванны в печь подают некоторое количество железной руды или продувают ванну кислородом или сжатым воздухом. Углерод начинает интенсивно окисляться, уровень шлака в печи несколько поднимается. В это время отключают подачу топлива, давление в печи падает и шлак вспенивается и уходит из печи в специально подготовленные шлаковые чаши. На печах малой и средней емкости шлак скачивается через среднее завалочное окно, на большегрузных печах шлак скачивается еще и через специальные отверстия в задней стенке печи. В тот момент, когда шлаковые чаши наполнятся шлаком, топливо вновь подают в печь, давление в печи возрастает, шлак оседает и перестает уходить из печи.

Часто для ускорения скачивания шлак сгребают с помощью гребков, помещаемых на хоботе завалочной машины. Отключать подачу топлива при этом не следует. Основность скачиваемого шлака гораздо выше, чем «сбегающего» во время плавления. Вместе со скачиваемым шлаком из печи уходят значительная часть оставшегося в ванне фосфора и некоторое количество серы.

Чтобы перевести оставшиеся в шлаке фосфор и серу в прочные соединения, наводят новый шлак присадками свежеобожженной извести. Основность шлака CaO/SiO2 при этом возрастает до 2,5 и более. Если такой шлак оказывается чрезмерно густым и вязким, то его разжижают присадками боксита или плавикового шпата. Окислительная атмосфера печи непрерывно питает ванну кислородом и содержащийся в металле углерод окисляется и ванна кипит. Вызываемое этим перемешивание благоприятствует передаче тепла от факела к ванне, и температура металла постепенно возрастает.

Чтобы ускорить шлакообразование, иногда одновременно присаживают и железную руду (агломерат, окатыши). Кислород твердого окислителя интенсивно окисляет углерод, что обеспечивает хорошее перемешивание ванны и ускоряет шлакообразование. Успешно проводить полировку можно лишь в том случае, если металл достаточно нагрет к концу плавления, так как присадка железной руды и флюсов охлаждает ванну. Для нормального проведения полировки необходим перегрев металла выше температуры плавления на 40-60°С. При указанной степени перегрева количество единовременно присаживаемых материалов не должно превышать 2-2,5%. Если по условиям дефосфорации и десульфурации необходимо присаживать большее количество материалов, то их дают в два и несколько приемов, обеспечивая соответствующий нагрев ванны. При этом следует иметь в виду, что 1 % твердого окислителя охлаждает ванну на 20-25°С, извести - на 10-15°С, боксита - на 15-20°С (В конвертерных процессах, то есть без поглощения тепла от факела, охлаждающее действие выше, соответственно 35-40, 15-20, 20-25°С). При необходимости глубокой дефосфорации и десульфурации металла производят одно или два дополнительных скачивания и наводки нового шлака в период доводки.

Кроме того, для нормального проведения периода полировки необходим некоторый запас углерода, который обычно составляет 0,2-0,5% и зависит от продолжительности периода (какое количество и во сколько приемов присаживаются материалы), вместимости печи (чем меньше вместимость, тем больше требуется запас углерода).

Период чистого кипения необходим для окончательной подготовки металла к выпуску: нагрев его до заданной температуры, удаление газов и неметаллических включений. В этот период углерод окисляется практически только горячим кислородом газовой фазы печи при непрерывном поступлении тепла факела в ванну. Это создает благоприятные условия для нагрева металла. В этот период не рекомендуется присаживать в шлак флюсы и твердые окислители, за исключением случаев выплавки низкоуглеродистой стали, когда для интенсификации реакции окисления углерода разрешается присадка руды небольшими порциями.

Скорость нагрева металла в период чистого кипения обычно составляет 1-2°С/мин и зависит от вместимости и тепловой мощности печи, а также состояния шлака. Шлак в этот период должен иметь нормальную жидкоподвижность. Скорость окисления углерода в этот период обычно колеблется в пределах 0,003-0,006% С/мин и зависит от вместимости печи (удельной нагрузки на подину), окислительной способности газовой фазы и содержания углерода в металле При достижении концентрации углерода менее 0,10-0,15% скорость его окисления существенно снижается. Содержание марганца в период чистого кипения, когда [С]>0,1%, обычно увеличивается вследствие восстановления его из шлака ввиду повышения температуры ванны.

Основность шлака в этот период должна быть достаточной для предупреждения восстановления фосфора и обеспечения некоторого удаления серы. Это наблюдается при основности ~ 2,5. Но при чрезмерном повышении основности увеличивается вязкость шлака, что препятствует удалению серы из металла и нормальному нагреву его.

Скорость удаления серы из металла тем больше, чем больше скорость окисления углерода, так как, во-первых, сера частично удаляется вместе с СО в печные газы из металла и шлака; во-вторых, чем выше скорость окисления углерода, тем лучше использование десульфурирующей способности шлака. Повышение температуры ванны в этот период обеспечивает получение гомогенного шлака, увеличение скорости окисления углерода, а это улучшает не только десульфурацию металла, но и дегазацию его.

Во время чистого кипения благодаря нормальному состоянию ванны (наличию гомогенного шлака и равномерному кипению) скорость поступления водорода из газовой фазы снижается, а скорость удаления его в пузырях СО возрастает. В результате содержание водорода в металле снижается. По многочисленным исследованиям, содержание водорода в металле в начале чистого кипения обычно составляет 4-6 см3/100 г, в процессе чистого кипения снижается на 1-2 см3/100 г.

Продолжительность чистого кипения для дегазации металла, включая снятие его переокисленности, составляет 20-30 мин. Но этого времени часто бывает недостаточно для нагрева металла, особенно при выплавке легированной стали, требующей введения в конце плавки большого количества холодных ферросплавов, поэтому продолжительность чистого кипения обычно составляет 30-45 мин.

Задача мастера-сталевара заключается в том, чтобы к моменту, когда температура металла окажется достаточной для выпуска, ванна хорошо прокипела, очистилась бы от газов и неметаллических включений, в металле содержалось бы необходимое количество углерода и минимум серы и фосфора. При соблюдении всех этих требований период кипения заканчивают и металл раскисляют. Если раскислители вводят в ковш, то кипящий металл выпускают из печи без раскисления.

Раскисление и легирование металла могут быть проведены как в печи, так и в ковше (на желобе) во время выпуска плавки. В печь обычно присаживают тугоплавкие и труднорастворимые ферросплавы, например, феррохром. Для уменьшения угара раскисляющих и легирующих элементов металл предварительно раскисляют низкопроцентным ферросилицием (15-20% Si).

Выпуск плавки всегда является ответственной операцией. Чтобы выпуск плавки протекал нормально, необходимо поддерживать нормальными размеры сталевыпускного отверстия и хорошо его заделывать. Продолжительность выпуска плавки из мартеновских печей обычно колеблется в пределах 10-20 мин и в основном зависит от вместимости печи (чем меньше вместимость печи, тем меньше продолжительность выпуска). По ходу выпуска в ковш присаживают раскислители и легирующие, в современной практике эту операцию стараются перенести полностью из печи в ковш.

Общая длительность плавки в мартеновских печах колеблется в пределах от 5-6 до 10-15 ч и зависит от многих факторов вместимости печи, вида применяемого чугуна (жидкий или твердый), его доли в шихте, системы отопления, степени интенсификации сжигания топлива и окисления примесей, степени механизации работ по обслуживанию печи и т. д. Увеличение вместимости печи, при постоянстве других условий, приводит к возрастанию длительности плавки.

Плавки на жидком чугуне имеют меньшую продолжительность чем на твердом, поскольку при использовании жидкого чугуна уменьшается длительность периодов загрузки шихты и плавления. С увеличением доли чугуна в шихте также уменьшается продолжительность периодов загрузки и плавления.

Применение топлива с высокой теплотой сгорания (мазута природного газа) и интенсификация его сжигания кислородом обеспечивает уменьшение продолжительности плавки до 20-25% по сравнению с использованием для отопления печи смеси доменного и коксового газов Наибольшее уменьшение продолжительности плавки и повышение производительности мартеновских печей без увеличения их вместимости обеспечивает использование кислородного дутья для прямого окисления примесей металла.

При конструировании мартеновских печей стремятся максимально увеличить тепловоспринимающую площадь (площадь подины), следовательно, уменьшить толщину слоя металла (глубину ванны, которая для крупных печей не превышает 1,5-2,0 м). К тому же мартеновские печи обязательно должны иметь рабочие окна, расположенные непосредственно над ванной. В этих условиях продувка ванны кислородом возможна с ограниченной интенсивностью, максимально до 10-20 м3/(тч), тогда как в конвертерах она достигает 5-6 м3/(т мин) и более. Поэтому при одинаковой вместимости мартеновские печи имеют годовую производительность примерно в 10 раз меньшую. Низкая производительность является основным недостатком мартеновских печей. Кроме того, ремонт мартеновских печей требует больших материальных и трудовых затрат. Главное их достоинство - возможность ведения процесса при любом расходе чугуна в шихту. Другим преимуществом мартеновских печей является использование первичной энергии (тепла газообразного и жидкого топлив).


4.6 Тепловая работа и отопление мартеновских печей

В течение всех периодов плавки в печь подают топливо. Под действием тепла факела нагреваются кладка печи и шихта. Около 85— 90 % тепла от факела к ванне передается излучением и 5—15 % — конвекцией.

В соответствии с формулой Стефана — Больцмана, количество тепла Q, переданного холодной шихте излучением, составляет:

Q = δεп [(Тгор/100)4 - (Тхол/100)4],

где δ — коэффициент, учитывающий оптические свойства кладки и форму рабочего пространства;

εп — степень черноты пламени;

Тгор и Тхол — температуры факела (горячего) и шихты (холодной), К.

Таким образом, чем выше температура факела и степень черноты пламени, тем интенсивнее нагревается шихта и тем меньше времени затрачивается на плавку. Повышения температуры факела достигают улучшением степени нагрева воздуха и газа в регенераторах и обогащением воздуха кислородом; повышения степени черноты факела — карбюрацией пламени.

Двухатомные газы (О2, N2, Н2) практически лучепрозрачны для волн всех длин, трехатомные (СО2, Н2О, SO2) обладают некоторой излучательной способностью, однако степень черноты пламени горячего чистого газа составляет всего 0,1—0,2. Чтобы повысить степень черноты пламени, необходимо обеспечить в нем содержание твердых «черных» частичек (в первую очередь углеродистых).

Углеродистые частицы могут появиться в пламени в результате разложения углеводородов: СхНу = хCTB + уНгаз, а также при добавке к подаваемому в печь газу различных жидких или твердых топлив, богатых углеродом и сложными углеводородами (мазут, каменноугольный пек). Практически степень черноты пламени εп не должна быть ниже 0,5; в большинстве случаев она составляет 0,55—0,75.

При одной и той же характеристике факела разность [(Тгор/100)4 - (Тхол/100)4] тем выше, чем холоднее шихта. Наиболее низкая температура шихты наблюдается во время завалки и в начале периода плавления. Степень черноты холодной твердой шихты близка к единице (0,92—0,95). Поэтому в этот период передача тепла от факела к шихте максимальна, она настолько велика, что практически нет опасности оплавить огнеупоры, и в печь подают максимальное количество топлива.

По мере нагрева шихты температура ее Тхол возрастает, шихта раскаляется, покрывается шлаком и сама начинает отражать тепловые лучи, в результате чего условия поглощения тепла шихтой ухудшаются. Во избежание нагрева и оплавления огнеупора необходимо уменьшать подачу топлива.

Таким образом, подача топлива по ходу плавки меняется. Максимальной величины расход топлива достигает во время завалки и в начале периода плавления. Подаваемое в это время количество тепла называют максимальной нагрузкой. По мере прогрева шихты подачу топлива уменьшают и тепловая нагрузка падает. Тепловая работа мартеновской печи характеризуется средней тепловой нагрузкой или тепловой мощностью печи, которая представляет собой частное от деления общего расхода тепла на время плавки:

Расход тепла, кДж /Прод. плавки, ч = Тепловая мощность, кДж/ч

Средняя тепловая нагрузка в зависимости от тоннажа печи возрастает от 23,2 для 125-т печи до 69,9 МВт (252 кДж/ч) для 900-т печи. Максимальная тепловая нагрузка на 20 — 40 % выше средней.

Для характеристики топлива и условий его сжигания применяют коэффициент использования топлива (к. и. т.):

где QТ  — теплота сгорания топлива;  QПС — тепло уходящих газов.

Для мартеновских печей К.И.Т. составляет 0,50 — 0,55.

Удельный расход тепла (расход тепла топлива на 1 т стали) зависит от многих факторов и прежде всего от емкости печи. По мере увеличения садки печи уменьшаются относительные потери тепла на нагрев футеровки, на отвод тепла с охлаждающей водой и другие потери, в результате удельный расход тепла снижается с 840 для 10 –20т печей до 210 МДж/т для 900-т печей.

Топливо мартеновских печей

В России наиболее распространены в качестве топлива для мартеновских печей природный газ и мазут.

Мазут — наилучшее топливо для мартеновских печей, он дает яркосветящийся настильный высокотемпературный факел (калориметрическая температура горения мазута 2650 °С). Обычно мазут содержит 83-85 % С и 10—11 % Н2, остальное — влага, зола и сера. Содержание серы в мартеновских мазутах колеблется в пределах 0,5—0,7 %. Сернистые мазуты (3 % S и более) в мартеновском производстве применяют редко, так как сера из топлива переходит в металл и ухудшает его качество.

Перед подачей к форсункам мазут нагревают до 70—80 °С. Распыление мазута осуществляют сжатым воздухом, подаваемым под избыточным давлением 0,5—0,7 МПа или перегретым до 300—350 °С паром под избыточным давлением 1,1—1,2 МПа.

Природные газы основных месторождений России примерно на 95 % состоят из метана СН4. Факел природного газа малосветящийся и для повышения его светимости одновременно с газом в печь вводят некоторое количество (до 30—40 %) мазута. Добавка мазута не только повышает светимость факела, но и утяжеляет его, делает факел более настильным

Повышать светимость факела пламени природного газа можно также конвертированием, нагревая часть его при недостатке воздуха. Метан при нагревании разлагается («реформируется») с выделением большого количества сажистых частиц (СН4 = С + 2Н2), что обеспечивает получение светящегося факела

Природный газ является «удобным» топливом: он не содержит ядовитых веществ и вредных примесей, дешев, легко транспортируется Ряд мартеновских печей оборудован газо-кислородными горелками, при помощи которых газ вводят в печь через свод, и высокотемпературный факел природного газа, горящего в кислороде, направляют непосредственно на шихту. Скорость плавления шихты при этом значительно возрастает.

Калориметрическая температура горения холодных мазута и природного газа в нагретом воздухе составляет 2600—2650 °С, а фактическая ×0,7 = 1820-1850 °С. Таким образом, такие высококалорийные виды топлива, как мазут и природный газ, дают высокотемпературный факел без подогрева топлива (но с подогревом воздуха)

4.7 Шлакообразование и шлаковый режим мартеновской плавки

Для мартеновского процесса шлаковый режим имеет исключительно важное значение, так как в мартеновской печи нагрев металла происходит через слой шлака, т е шлак в мартеновской плавке участвует не только в рафинировании металла, но и в его нагреве.

Основные источники образования  шлака следующие: продукты окисления примесей чугуна и скрапа (SiО2, MnO, Р2О5, Сг2О3 и др); продукты разъедания футеровки агрегата (MgO и СаО в основных печах и SiO2 в кислых); загрязнения, внесенные шихтой (песок, глина и др.), т. е. SiО2, A12O3; миксерный шлак; ржавчина, покрывающая скрап, т. е. Fe3O4, Fe2O3, FeO; добавочные материалы (известняк, известь, железная руда, агломерат, марганцевая руда и др.) — СаО, Fe2O3, MnO, SiO2, A12O3 и др.

Шлакообразование в мартеновской плавке начинается еще в период прогрева лома и получает большое развитие в начале плавления после заливки чугуна Первичный шлак, образующийся в период прогрева, состоит главным образом из оксидов железа и относительно меньшего количества оксидов марганца, кремния и кальция. По ходу плавления состав шлака непрерывно изменяется вследствие окисления примесей чугуна, всплывания из нижних слоев ванны ранее заваленных сыпучих материалов и удаления образовавшегося пенистого шлака.

Характер изменения содержания основных компонентов шлака по ходу плавки в мартеновском процессе примерно такой же, что в кислородно-конвертерном.

4.8 Особенности мартеновского процесса при высоком содержании чугуна в шихте

На первой стадии развития мартеновского процесса, когда печи имели малую вместимость (до 5-10 т), малую удельную нагрузку на подину (- 1 т/м2) и плавка в них длилась > 12 ч, кислорода, поступающего из газовой фазы печи, было достаточно для окислительного рафинирования металла даже при высоком содержании чугуна в шихте. По мере увеличения вместимости печей и улучшения их тепловой работы, кислорода, поступающего из газовой фазы через слой шлака в металл стало недостаточно, поэтому рафинирование, особенно окисление углерода, отставало от нагрева металла. Для устранения этого недостатка еще в 80-х годах XIX в. в качестве дополнительного источника кислорода начали применять железную руду. Этот вариант процесса получил название скрап-рудного.

Применение кислорода для интенсивной продувки мартеновской ванны кислородом, получившее распространение в 60-х годах XX в., позволило исключить твердые окислители из шихты или ограничиться малым расходом их. Так появился новый вариант мартеновского процесса, который называется скрап-кислородным процессом.

В настоящее время при переделе шихт с высоким расходом жидкого чугуна используется процесс, занимающий промежуточное положение между скрап-рудным и скрап-кислородным: недостаток кислорода частично компенсируется кислородом твердых окислителей, даваемых в завалку, и частично кислородом дутья.

Скрап-рудный процесс без продувки ванны кислородом

Варианты мартеновской плавки различаются в первую очередь способом достижения заданного содержания углерода в металле к моменту расплавления ванны, от которого зависят нормальное проведение периода доводки и выпуск металла заданного состава. При скрап-рудном процессе эта задача решается введением в период завалки определенного (оптимального для данных условий) количества твердого окислителя. В этом состоит основная особенность скрап-рудного процесса.

Расход твердого окислителя в период завалки определяется из баланса кислорода, в приходные статьи которого входят кислород поступающий из атмосферы печи, из окалины лома, из СО2 известняка; в расходные: кислород, расходуемый на окисление углерода и примесей чугуна, а также на образование оксидов железа шлака. Формула для расчета расхода руды, полученная из уравнения баланса кислорода, может быть представлена в виде:

Каждая из этих статей зависит от большого числа факторов, поэтому развернутая формула получается сложной и ею в производственных условиях можно пользоваться лишь в том случае, если расчеты выполняют при помощи ЭВМ.

Обычно расход твердого окислителя (руды, агломерата, окатышей) в период завалки колеблется в пределах 5-15%, при высокой доле (>70%) чугуна в шихте, достигая >20%.

Основными факторами, существенно влияющими на расход твердых окислителей в период завалки, являются следующие:

1. Доля чугуна в шихте и его химический состав. Чем выше количество чугуна в шихте и окисляющихся примесей в нем, тем больше расход кислорода на окисление примесей металла и на образование оксидов железа шлака, меньше поступление в ванну кислорода из газовой фазы печи и в виде окалины лома. При постоянстве других условий с увеличением расхода чугуна в шихту и содержания окисляющихся примесей в нем расход руды в период завалки увеличивается.

2. Вместимость или удельная нагрузка на подину печи, от которой зависит поступление кислорода из газовой фазы печи.

С увеличением удельной нагрузки на подину поступление кислорода из атмосферы печи уменьшается. Удельная нагрузка на подину возрастает при повышении вместимости печи. Следовательно, с увеличением вместимости печи при повышении удельной нагрузки на подину расход руды в период завалки возрастает. Но при увеличении удельной нагрузки на подину, если другие условия остаются постоянными, продолжительность периода плавления возрастает. Это вызывает повышение поступления кислорода из газовой фазы печи, т. е. уменьшение расхода руды в период завалки. Однако в целом с увеличением вместимости печи при постоянстве других условий расход руды в период завалки, как правило, возрастает.

3. Тепловая работа печи влияет на расход руды в завалку, изменяя поступление кислорода из атмосферы печи. Чем лучше тепловая работа печи, особенно при интенсификации сжигания топлива кислородом, тем выше удельное поступление кислорода из газовой фазы печи и меньше продолжительность плавления, т. е. с одной стороны происходит увеличение поступления кислорода (уменьшение расхода руды в период завалки), а с другой - уменьшение длительности периода плавления вызывает обратный эффект (увеличение расхода руды). Однако улучшение тепловой работы печи обычно вызывает уменьшение расхода руды в период завалки, т. е. наблюдается более существенное увеличение удельного поступления кислорода из газовой фазы печи, чем уменьшение продолжительности плавления.

4. Содержание углерода в металле по расплавлении. Чем больше оно, тем меньше расход кислорода на окисление углерода и расход руды в период завалки

Кроме указанных основных факторов, на расход твердых окислителей в период завалки влияют режим спуска шлака в период плавления и качество лома. Чем обильнее и раньше спускают шлак, тем больше расход кислорода на образование оксидов железа шлака и расход руды в период завалки. Чем мельче и окисленнее лом, тем больше количество кислорода поступает с окалиной и меньше расход руды в период завалки.

Скрап-кислородный процесс

Скрап-кислородный процесс отличается от скрап-рудного лишь тем, что в периоды плавления и доводки кислород твердых окислителей заменяется кислородом дутья. Эта замена при полном ее использовании позволяет увеличить производительность мартеновских печей в 1,5-2 раза. Преимущества скрап-кислородного варианта мартеновского процесса: во-первых, вдувание газообразного кислорода в ванну позволяет повысить в несколько раз скорость окислительного рафинирования металла; во-вторых, замена кислорода твердых окислителей, на разложение которых расходуется большое количество тепла, газообразным кислородом улучшает тепловой баланс плавки и приводит к снижению расхода топлива. Однако при вдувании кислорода в ванну обычно наблюдается некоторое снижение стойкости печи (увеличение расходов на огнеупоры и ремонтные работы) и неизбежно уменьшение выхода годной стали (вследствие почти полного исключения из шихты твердых окислителей и увеличения угара железа). Однако эти потери обычно меньше того выигрыша, который достигается при уменьшении продолжительности плавки (повышения производительности печи) и снижении расхода топлива.

Кроме того, при скрап-кислородном процессе гораздо проще управление реакцией окисления углерода, в частности легче достижение заданного содержания углерода в металле по расплавлении. Это объясняется тем, что расход вдуваемого в ванну кислорода, определяющий остаточное содержание углерода в металле, можно легко изменить (увеличить или уменьшить) по ходу процесса, например, взяв пробу металла и определив в нем содержание углерода до расплавления ванны. Такая корректировка невозможна при скрап-рудном процессе, так как все расчетное количество твердого окислителя присаживается в ванну в начале процесса - в период завалки сыпучих материалов.

Таким образом, скрап-кислородный процесс является не только самым высокопроизводительным способом мартеновского передела шихт с высоким содержанием чугуна, но и наиболее легко управляемым процессом.

Продувка ванны кислородом, являющаяся основной отличительной особенностью технологии скрап-кислородного мартеновского процесса, обычно начинается с момента заливки чугуна и ведется до начала чистого кипения, т. е. в течение главных по продолжительности и значению технологических периодов (операций). Основными параметрами продувочного периода плавки являются удельный расход дутья (Wд, м3/т), удельная интенсивность продувки [iо23/(т-ч)] и продолжительность продувки (τп , ч). Они между собой связаны:

Удельный расход кислорода определяется расчетом по балансу кислорода, учитывающего коэффициент усвоения кислорода (обычно составляет 0,7-0,9, но может быть > 1, если во время продувки ванны имеет место интенсивное поглощение кислорода из атмосферы печи).

Удельный расход кислорода, вдуваемого в ванну в период плавления в основном зависит от доли чугуна в шихте, его химического состава и содержания углерода в металле по расплавлении. Кроме того, если плавку ведут с введением в период завалки твердого окислителя, расход кислорода зависит также от расхода последнего.

Обычно при скрап-кислородном процессе расход кислорода на продувку ванны в период плавления колеблется в пределах 15-25 м3/т, в период доводки 5-10 м3/т.

Удельная интенсивность продувки. Она обычно изменяется в пределах 5-20 м3/(т ч) в зависимости от конкретных условий работы цеха (печи). Практика показывает, что продувка с удельной интенсивностью < 5 м3/(т-ч) не оправдывает затраты на кислород и его подачу в ванну, сооружение газоочистки и т. п. При 20 м3/(т-ч) производительность мартеновских печей можно увеличить в два раза и более.

Однако полное использование этих возможностей интенсификации мартеновского процесса ограничено возможностями по кислороду и шихтоподаче. Кроме того, чем выше удельная интенсивность продувки, тем больше должна быть доля жидкого чугуна в шихте. Это объясняется тем, что скорость обезуглероживания увеличивается в большей степени, чем скорость нагрева металла, поэтому относительное изменение температуры ванны уменьшится, т. е. на нагрев ванны на одну и ту же величину требуется больше углерода. Поскольку углерод в ванну вносится чугуном, то его расход должен быть увеличен.

В связи с этим скрап-кислородным процессом работает только часть мартеновских печей, обычно имея удельную интенсивность продувки 6-8, редко 10 м3/(т ч). При этом производительность печей увеличивается на 25-35%, редко выше, а удельный расход кислорода для продувки составляет 15-25 м3/т.

Синхронизация процессов обезуглероживания и нагрева металла в скрап-кислородном мартеновском процессе обеспечивается гораздо легче, чем в конвертерных процессах благодаря тому, что, во-первых, проще контролировать текущие значения содержания углерода и температуры, во-вторых, имеется регулируемый подвод тепла извне.

4.9 Показатели и перспективы мартеновского производства стали

Плавка стали в мартеновских печах отличается от обычной конвертерной необходимостью подвода тепла извне и более высоким расходом лома в шихту, что обуславливает меньшую общую энергоемкость. Для оценки ресурсоемкости мартеновского процесса рассмотрим материальный и тепловой балансы скрап-рудного и скрап-процесса при выплавке углеродистой стали.

Материальный баланс мартеновского процесса отличается от конвертерного не только меньшим расходом чугуна, но и металлошихтыв целом. Например, мартеновский скрап-процесс может быть нормально проведен при расходе чугуна 300 кг/т, тогда как для обычной конвертерной плавки требуется не менее 800 кг/т. Общий расход металлошихты в мартеновском процессе обычно 1125-1135 кг/т стали, тогда как в конвертерном процессе на 10-15 кг/т больше.

Тепловой баланс. В мартеновском процессе его составление имеет важное значение прежде всего для определения недостатка тепла на процесс и необходимого расхода топлива. Удельный дефицит тепла в мартеновских процессах может изменяться в очень широких пределах: 600-1500 МДж/т. Обычно коэффициент использования топлива (к.и.т.) составляет 22-27%, поэтому расход условного топлива колеблется в пределах 80-140 кг/т для скрап-рудного и 160-220 кг/т для скрап-процесса. Минимальный расход топлива наблюдается при высоком расходе жидкого чугуна и продувке ванны кислородом (кислородный мартеновский процесс), максимальныйпри самом низком расходе твердого чугуна в скрап-процессе. Однако общая энергоемкость скрап-процесса с учетом прошлых затрат значительно меньше, чем скрап-рудного.

Удельный расход топлива в мартеновском процессе, кроме расхода чугуна и его физического состояния, зависит от вместимости печи и продолжительности плавки. Чем больше вместимость печи, тем меньше удельный расход топлива. При прочих равных условиях, чем меньше продолжительность плавки, тем меньше расход топлива.

Мартеновский процесс сыграл огромную роль в производстве стали в XIX-XX веках. Однако в современных условиях у него можно отметить ряд недостатков. Во-первых, низкая производительность, во-вторых, большие трудности в синхронизации плавки стали в мартеновской печи и разливки стали на МНЛЗ, в-третьих, большой расход огнеупорных материалов и доля ручного труда при ремонтах печей, в-четвертых, более тяжелые условия труда.

По этим причинам мартеновский процесс неуклонно вытесняют кислородно-конвертерный и электросталеплавильный. В значительных объемах мартеновское производство сохранилось лишь в Китае, России и Украине, что объясняется недостатком финансовых средств при модернизации сталеплавильного производства.

4.10 Сущность работы двухванных сталеплавильных агрегатов

Практика интенсивной продувки мартеновской ванны кислородом показала, что не достигается теоретически ожидаемое улучшение теплового баланса и уменьшение расхода топлива. Основная причина этого несоответствия заключается в неудовлетворительном использовании тепла реакции окисления СО, выделяющегося из ванны. При нормальном ходе обычного мартеновского процесса СО полностью окисляется до СО2 над ванной, тепло этой реакции используется для нагрева ванны, причем лучше, чем тепло топлива. При интенсивной продувке мартеновской ванны кислородом выделяется такое большое количество СО, которое полностью окислить до СО2 в рабочем пространстве не удается, и использование тепла этой реакции для нагрева ванны снижается, ухудшая тепловой баланс плавки.

Отрицательным последствием неполного окисления СО до СО2 в рабочем пространстве также является неизбежный перегрев нижнего строения печи, в первую очередь насадок регенераторов, и быстрый выход их из строя.

Вследствие указанных недостатков мартеновской печи необходимо было создать новый сталеплавильный агрегат, в котором процесс можно было проводить с более интенсивной продувкой, чем в мартеновских печах, максимально используя при этом тепло дожигания СО до СО2. По своим габаритам агрегат должен быть таким, чтобы его можно было поставить вместо мартеновских печей. Этим требованиям соответствует двухванная печь (см. рисунок 10). Рабочее пространство имеет две ванны, каждая из которых снабжена тремя фурмами для подачи кислорода и шестью газо-кислородными горелками, расположенными в своде и предназначенными для отопления печи.

1 - кислородные фурмы, 2 - сводовые газо-кислородные горелки

Рисунок 10 – Схема устройства рабочего пространства двухванной печи

В каждой ванне плавка ведется со смещением примерно на половину продолжительности, т. е. конец плавки в одной ванне соответствует середине плавки в другой. В первой ванне, в которой процесс закончен, осуществляются выпуск плавки, заправка ванны, завалка твердых шихтовых материалов и их прогрев главным образом теплом реакции окисления выделяющегося из второй ванны СО до СО2 и частично теплом топлива, подаваемого через сводовые горелки. В это время во второй ванне производится продувка металла кислородом. Образующийся при этом СО частично окисляется до СО2 над второй ванной, но главным образом при переходе в первую ванну. Использование тепла этой реакции оказывается эффективным, так как, во-первых, происходит полное окисление СО до СО2, во-вторых, тепло воспринимают холодные твердые материалы.

Благодаря этому, хотя процесс в двухванных печах имеет во много раз большую продолжительность (3—4 ч), чем в кислородных конвертерах (15- 20 мин), в двухванных печах возможна переработка большего количества лома, чем в конвертерах. Так, плавку в двухванных печах можно вести с использованием до 35% лома, расходуя при этом топлива всего 10-15 кг/т, причем в основном на поддержание печи в рабочем состоянии во время ее заправки.

Изменение направления движения газов (перекидка) производится один раз в середине плавки. Газы уходят из печи со стороны ванны, где идет первая половина плавки, которую часто называют холодным периодом.

Основной особенностью работы двухванной печи является высокоэффективное использование тепла окисления до СО2 оксида углерода СО, выделяющегося при интенсивной продувке металла кислородом.

Внешне двухванная печь мало отличается от мартеновской. Первая половина плавки (заправка печи, завалка и прогрев шихты, заливка чугуна) проводится, как в мартеновском процессе, но только за более короткое время. В течение первой половины плавки происходит интенсивный нагрев твердой шихты теплом, подводимым извне: теплом окисления СО до СО2, образующегося в соседней ванне, и теплом топлива, т. е. ванна в течение первой половины плавки отапливается, что и дает основание агрегат называть печью, а не конвертером.

Вторая половина плавки — окислительное рафинирование, проводится, как в кислородном конвертере, но с меньшей интенсивностью продувки. Удельная интенсивность продувки в двухванных печах обычно составляет 0,4-0,6 м3/(т-мин) или 25-35 м3/(тч). Она в первую очередь ограничивается пропускной способностью дымового тракта печи, а также продолжительностью первой половины плавки (синхронность работы двух ванн). При увеличении пропускной способности дымового тракта и сокращении продолжительности первых операций (заправки и завалки) возможно повышение интенсивности продувки до >1 м3/(т-мин).

4.11 Технология плавки в двухванных сталеплавильных агрегатах

Процесс в двухванных печах по существу является определенным сочетанием отдельных элементов технологии плавки стали в мартеновских печах и кислородных конвертерах. Однако этот процесс отличается от мартеновского и конвертерного тем, что для нормальной работы агрегата необходима постоянная синхронность работы обеих ванн, требуется строгое соблюдение графика проведения операций в каждой ванне. Примерный график совмещения основных операций и их продолжительности приведен на рисунке 11.

Рисунок 11 – График совмещения операций при плавке стали в двухванных печа и примерная их продолжительность (% от общей длительности плавки)

На двухванных печах (садка каждой ванны 250-300 т) общая продолжительность цикла в одной ванне 3-4 ч, т. е. плавки выпускаются из печи с промежутками в 1,5-2 ч.

Заправка печи проводится для восстановления изношенных за время плавки участков наварки ванны, передней, задней и разделительной стенок. Поскольку ванна двухванных печей более глубокая, углы наклона стенок и откосов больше, чем у мартеновских печей, то ее износ более интенсивный. В связи с этим продолжительность заправки двухванных печей несколько больше продолжительности заправки мартеновских печей.

Завалка шихтовых материалов. Твердую часть шихтовых материалов обычно составляют лом и флюсы (главным образом известь). Чаще все количество флюсов, расходуемых на плавку, вводят во время завалки, так как присадка части по ходу плавки (после расплавления ванны) требует прекращения продувки и удлиняет этот период. Твердые окислители не применяют или применяют в ограниченном количестве, чтобы уменьшить эндотермический процесс окисления углерода кислородом оксидов железа. Этим достигается повышение расхода лома в шихту.

Прогрев шихты (лома) в двухванных печах осуществляется преимущественно теплом реакции окисления СО до СО2. Прогрев лома тем лучше, чем больше продолжительность этого периода, поэтому если предыдущий период - завалка затягивается, то на нагрев остается меньше времени. Температура нагрева лома, по крайней мере верхних его слоев, должна быть не ниже температуры затвердевания чугуна (1100-1150°С). При заливке чугуна на недостаточно прогретую шихту происходит "закозление" его, и период продувки начинается ненормально: вдуваемый кислород плохо усваивается ванной, реакции окисления примесей, в том числе и углерода, протекают медленно; преимущественно окисляется железо, и в шлаке накапливается большое количество оксидов железа. Это приводит, во-первых, к удлинению второй половины плавки и снижению производительности печи; во-вторых, может вызвать выброс шлака и металла из печи вследствие возможного скачкообразного роста скорости окисления углерода кислородом оксидов железа, накопленным в шлаке в начале продувки, когда металл и шлак нагреты и приобретают нормальную жидкоподвижность. Перегрев лома также недопустим, так как при перегреве в ванне накапливается большое количество жидких оксидов железа. При заливке чугуна эти оксиды железа вызывают бурное окисление углерода чугуна, что тоже может привести к выбросу металла и шлака из печи. Вследствие кратковременности (0,5-0,7 ч) и непослойного прогрева среднемассовая температура шихты обычно составляет 700-800°С, что ограничивает расход лома.

Заливка чугуна в двухванных печах является периодом, соответствующим середине плавки. Продолжительность периода заливки чугуна определяется организационными возможностями. Обычно чугун к двухванным печам подают в двух ковшах, поэтому продолжительность его заливки значительно больше, чем в конвертерных цехах, и обычно достигает >25 мин. Кроме того, в конвертер чугун заливают на холодный лом, и нет опасности бурного окисления углерода, поэтому допустима высокая скорость заливки. В двухванных печах лом в ванне перед заливкой чугуна прогрет и имеется определенное количество жидких оксидов железа, поэтому заливку чугуна необходимо производить осторожно с малой скоростью.

Продувка ванны кислородом, основная технологическая операция плавки, начинается с момента заливки чугуна и, как правило, ведется без остановки до достижения заданного содержания углерода. Режим продувки характеризуется интенсивностью подачи кислорода и положением фурм.

Удельная интенсивность подачи дутья в двухванных печах обычно колеблется в пределах 0,4-0,6 м3/(т мин), но может достигать > 1 м3/(т мин). По ходу плавки, как правило, интенсивность подачи дутья не изменяют. При нормальной продувке фурмы опускают в шлак, стараясь держать их концы на границе шлак-металл, в этом случае улучшается усвоение кислорода, уменьшается разбрызгивание шлака и металла, нет опасности прогара фурмы. Однако в отдельные моменты плавки одну или две фурмы поднимают выше уровня шлака и осуществляют поверхностную продувку. Это делается при недостаточном нагреве металла для окисления СО до СО2 над ванной и усиления нагрева ее теплом этой реакции. Кроме того, поверхностная продувка используется для ускорения шлакообразования, так как при этом, во-первых, улучшается нагрев и, во-вторых, повышается содержание оксидов железа в шлаке, что ускоряет растворение извести в нем, и теплота образования оксидов железа улучшает нагрев ванны.

В двухванных печах продувку металла можно вести не техническим (чистота 99,5%), а технологическим (чистота 95%) кислородом. Это объясняется, во-первых, тем, что в зоне реакции температура несколько ниже, чем в конвертерах вследствие меньшего поступления кислорода через одну фурму; во-вторых в двухванных печах ввиду относительно большой площади ванны получает значительное развитие удаление азота из металла в пузырях СО, выделяющихся из ванны вне зоны вдувания кислорода.

Шлаковый режим. Сходство шлакового режима процессов в двухванных и мартеновских печах в первую очередь заключается в возможности спуска первичного шлака по мере его образования. Это позволяет при необходимости обеспечить высокую степень дефосфорации металла при меньшем расходе флюсов. Кроме того, спуск первичного шлака улучшает десульфурацию, так как, во-первых, первичный шлак обладает определенной серопоглотательной способностью и уносит серу; во-вторых, удаление значительного количества SiO2 с первичным шлаком позволяет получить конечный шлак с меньшим содержанием SiO2, обладающий повышенной серопоглотительной способностью. Основное различие в шлаковом режиме состоит в том, что в двухванных печах нет необходимости в спуске первичного шлака для улучшения нагрева ванны, так как во время продувки ванна нагревается в основном теплом экзотермических реакций окисления компонентов металла, а не теплом факела, как в мартеновских печах.

Шлаковый режим двухванной печи имеет некоторые недостатки. Во-первых, в шлаке двухванных печей содержание МgО всегда выше, чем в конвертерном шлаке, и составляет >10% (большая продолжительность плавки и более реакционный шлак), в связи с чем фосфоро- и серопоглотительная способность ниже. Во-вторых, шлак в двухванных печах в основном нагревается от металла, поэтому повышение его основности выше 3-3,5 невозможно. При более высокой основности шлак получается гетерогенным, физически и особенно химически малоактивным. По содержанию основных компонентов (CaO, SiO2, FeO) формирование шлака в двухванных печах подчиняется закономерностям, характерным для кислородно-конвертерного процесса.

Режим окисления углерода в основном определяется дутьевым режимом. В течение первых 2/3 продувки об остаточном содержании углерода в металле судят по расходу кислорода. По достижении расчетного остаточного содержания углерода (1,0-1,5%) отбирают пробу металла и измеряют его температуру. При нормальном ходе плавки к этому моменту лом успевает полностью раствориться, и весь металл находится в жидком состоянии. Рафинирование металла в основном сводится к окислению избыточного количества углерода, причем эта реакция практически до конца плавки остается единственным источником тепла для нагрева ванны.

После расплавления ванны должна быть обеспечена синхронность проведения процессов окисления углерода и нагрева ванны. Это является важнейшей задачей, решаемой во время продувки. Ее решение упрощается, если возникает перегрев ванны, так как перегрев легко снимается присадкой твердого окислителя. Если обнаруживается недогрев, то необходимо обеспечить большее дожигание СО над продуваемой ванной. Для этого одну или две фурмы поднимают, располагая конец над ванной и расходуя часть кислорода на окисление СО. При этом также происходит некоторое окисление железа, так как, когда фурмы находятся над шлаком, содержание оксидов железа в нем повышается.

Указанным методом можно устранить небольшие недогревы. Если недогрев большой, то необходимо перейти к выплавке стали с возможно низким содержанием углерода, или доливать чугун.

При достижении заданных значений содержания углерода в металле и температуры его нагрева продувку прекращают.

Окисленность металла в двухванных печах не отличается от окисленности его в кислородных конвертерах, если конечный шлак нормальный, гомогенный и не переокислен. По содержанию азота при использовании технологического кислорода металл двухванных печей не отличается от конвертерного и мартеновского, а по содержанию водорода лучше мартеновского, поэтому при нормальном дутьевом и шлаковом режимах плавки сталь, полученная в двухванных печах, обычно не уступает мартеновской и кислородно-конвертерной.

Выпуск плавки может быть сразу после прекращения продувки или через некоторое время после 5-10 мин выдержки для снятия избыточного содержания оксидов железа в шлаке. Как показали исследования на ММК и других заводах, для снятия переокисленности шлака достаточно выдержки ~ 10 мин. Поскольку продолжительность выпуска плавки составляет - 10 мин, то выпуск плавки, сразу после окончания продувки нельзя рассматривать как ошибочный технологический прием.

Раскисление и легирование металла, как при кислородно-конвертерном процессе, проводят исключительно в ковше.

4.12 Перспективы применения двухванных печей

Двухванная печь имеет существенные преимущества перед мартеновской печью: двухванная печь лучше приспособлена для продувки кислородом, в связи с чем возможно достижение высокой производительности при меньшем расходе топлива. Так, двухванные печи с вместимостью одной ванны 250-300 т имеют годовую производительность 1,0-1,5 млн. т и расход топлива 10-20 кг/т. На мартеновских печах, работающих в тех же цехах и имеющих садку 500-600 т, производство в два и более раз меньше, расход топлива выше в пять раз и более. Простота конструкции (отсутствие регенераторов) двухванных печей уменьшает объем ремонтных работ (причем самых тяжелых) и снижает расход огнеупоров. Расход кислорода на двухванных печах выше, чем на мартеновских, и обычно составляет 70-80 м3/т. Однако благодаря меньшему расходу топлива и огнеупоров, меньшему объему ремонтных работ себестоимость стали, выплавленной в двухванных печах, обычно несколько ниже себестоимости мартеновской стали.

По производительности двухванные печи уступают кислородным конвертерам. Но установка кислородных конвертеров в мартеновских цехах существенно повышает стоимость реконструкции, усложняет эксплуатацию. Поэтому в 70-е годы в СССР и за рубежом на ряде заводов часть мартеновских печей заменили двухванными.

Однако, как показала практика, двухванные печи по сравнению с мартеновскими хотя и имеют явное преимущество по производительности, но по возможности переработки лома они уступают мартеновским печам. По этому показателю двухванные печи стоят ближе к кислородным конвертерам, т.е требуют высокого расхода чугуна, вводимого в шихту. Кроме того, качество выплавляемой стали и условия труда у двухванных печей хуже, чем у мартеновских печей и конвертеров. К 2000 году примерно половина двухванных агрегатов была остановлена в связи с развитием кислородно-конвертерного производства.


5 Внепечная обработка стали

До середины XX века сталеразливочный ковш выполнял роль емкости для передачи жидкой стали от плавильного агрегата к изложницам или кристаллизаторам МНЛЗ. Как показала практика, сталеразливочный ковш может быть использован для дегазации, раскисления, десульфурации, легирования, обезуглероживания стали и др. При этом может быть существенно сокращена продолжительность процесса плавки в сталеплавильном агрегате при одновременном повышении качества готового металла.

Поэтому на всех металлургических предприятиях при выплавке стали применяют различные способы внепечной обработки: раскисление-легирование, вакуумирование, обработка металла синтетическими шлаками, порошками, нейтральными газами.

5.1 Раскисление и легирование стали в ковше

Атмосфера большинства сталеплавильных агрегатов — окислительная. При окислительном характере газовой фазы какое-то количество кислорода всегда переходит из газовой фазы в металл.

Растворимость кислорода в γ-Fe при температуре плавления (1539ºС)
составляет 0,034 %, и далее при охлаждении она изменяется в соответствии с уравнением
lg [О] = - 12630/Т + 5,51, а также скачкообразно уменьшается при полиморфных превращениях железа γ-β-α. Это приводят к выделению из металла кислорода в виде дисперсной оксидной фазы. Чем меньше содержание кислорода, тем позднее начинается это выделение. При относительно низких концентрациях кислорода его обособление в самостоятельную фазу происходит уже во время службы изделия, что способствует охрупчиванию (старению) стали. Выделение кислорода в виде оксидной фазы при температурах прокатки или ковки может быть причиной плохой деформируемости стали в горячем состоянии и ее пониженной пластичности (особенно низкой ударной вязкости).

Для устранения отрицательных последствий присутствия кислорода сталь раскисляют. Раскисление заключается в связывании растворенного в металле кислорода в прочные оксиды, которые в большей части удаляются из металла.

Если металл содержит примеси, сродство которых к кислороду выше, чем у железа, то происходит окисление этих примесей и концентрация кислорода в металле уменьшается.

Если эти примеси вводят в ванну специально для того, чтобы уменьшить содержание кислорода, то их называют раскислителями. В качестве таких элементов-раскислителей используют марганец, кремний, алюминий, кальций, редкоземельные элементы. Раскислителем является также углерод. Кислород, растворенный в металле, реагирует с углеродом, и в результате реакции [О] + [C] = СОгаз происходит кипение металла.

В случае введения в металл элементов в количествах, превышающих их расход на раскисление стали (связывание кислорода), то процесс называют легированием стали

Способы раскисления и легирования стали

Технологическую операцию, при которой растворенный в металле кислород переводится в нерастворимое в металле соединение или удаляется из металла, называют, раскислением. После операции раскисления сталь называют раскисленной. Такая сталь при застывании в изложницах ведет себя «спокойно», из нее почти не выделяются газы, поэтому такую сталь часто называют «спокойной». Если же операцию раскисления не проводить, то в стали при ее постепенном охлаждении в изложнице будет протекать реакция между растворенным в металле кислородом и углеродом [О] + [С] = СОгаз. Образующиеся при этом пузырьки окиси углерода будут выделяться из кристаллизующегося слитка, металл будет бурлить. Такую сталь называют «кипящей».

В некоторых случаях раскисление стали проводят таким образом, чтобы удалить из нее не весь кислород. Оставшийся растворенный кислород вызывает кратковременное «кипение» металла в начале его кристаллизации. Такую сталь называют «полуспокойной».

В современном производстве стали применяют следующие способы раскисления стали: а) глубинное (осаждающее); б) диффузионное; в) обработкой синтетическими шлаками; г) обработкой вакуумом.

5.2 Обработка металла вакуумом

Газовая фаза образуется при протекании реакции окисления углерода, процессов выделения растворенных в металле водорода и азота, а также процессов испарения примесей цветных металлов.

При обработке вакуумом равновесие реакции [С] + [О] = CO сдвигается вправо, кислород реагирует с углеродом, образуя окись углерода.

[О] = рсо/К [C].

Следовательно, обработка стали в вакууме позволяет уменьшить концентрацию кислорода в расплаве пропорционально снижению остаточного давления.

В тех случаях, когда кислород в металле находится в составе оксидных неметаллических включений, снижение давления над расплавом приводит в результате взаимодействия с углеродом к частичному или полному разрушению этих включений по реакции (МеО) + [С] = [Me] + СОГ.

МnО или Сг2О3, восстанавливаются почти нацело; для восстановления более прочных включений, (А12О3 или ТiO2) требуется очень глубокий вакуум.

Обработка металла вакуумом влияет и на содержание в стали водорода и азота. Cодержание водорода в металле определяется при прочих равных условиях давлением водорода в газовой фазе Аналогично для азота.

Таким образом, при обработке металла вакуумом в нем уменьшается содержание растворенных кислорода, водорода, азота и содержание оксидных неметаллических включений; в результате выделения большого количества газовых пузырьков металл перемешивается, становится однородным, происходит «гомогенизация» расплава.

Способы вакуумной обработки стали: вакуумирование в ковше (с продувкой инертным газом и подогревом), порционное и циркуляционное вакуумирование, вакуумирование в процессе разливки.

5.3 Продувка металла инертными газами в ковш

Влияние продувки  металла   и н е р т н ы м и  газами на качество металла аналогично обработке вакуумом. Каждый пузырек представляет собой «вакуумную камеру», так как парциальные давления водорода и азота в таком пузырьке равны нулю, поэтому газы, растворенные в металле, переходят в пузырь и вместе с ним удаляются в атмосферу. При продувке инертным газом происходит интенсивное перемешивание металла, усреднение его состава; в тех случаях, когда на поверхности металла наведен хороший шлак, перемешивание облегчает протекание процесса ассимиляции таким шлаком НМВ; если этот имеет высокую основность (а также малую окисленность) происходит также десульфурация металла.

Технически операция продувки больших масс металла инертными газами в ковше проще и дешевле, чем обработка вакуумом, поэтому там, где это возможно, продолжительная по времени продувка инертными газами заменяет обработку вакуумом. Во многих случаях продувку металла инертным газом проводят одновременно с обработкой вакуумом, так как вызываемое продувкой энергичное перемешивание металла ускоряет процессы вакуумирования, делает вакуумирование более эффективным.

В промышленных условиях применяют три способа продувки металла аргоном: через пористые огнеупорные вставки в днище ковша; через ложный стопор, оканчивающийся огнеупорной пробкой с радиально расположенными отверстиями диаметром 0,5— 1,0 мм; через футерованную фурму, опускаемую в металл сверху.

Таким образом, при продувке металла инертными газами достигают: 1) энергичного перемешивания расплава, облегчения протекания процессов удаления в шлак нежелательных примесей; 2) усреднения состава металла; 3) уменьшения содержания газов в металле (кислорода и водорода); 4)   облегчения   условий   протекания   реакции   окисления   углерода; 5) снижения температуры металла.

5.4 Внеагрегатная десульфурация

Удаление серы в сталеплавильных процессах осуществляется путем перевода ее в соединения, не растворимые в металле и хорошо растворимые в шлаке. Таким соединением является CaS.

В условиях мартеновской или конвертерной плавки при высокой окисленности шлака (Σ(FeO) до 10-12 % и выше) коэффициент распределения серы (Ls = (S)/[S]) между шлаком и металлом не превышает 4—8. Процесс удаления серы может быть ускорен при обработке стали в ковше синтетическим шлаком, обладающим высокой десульфурирующей способностью, при одновременном сокращении продолжительности плавки.

Обработка стали синтетическими шлаками

Технологическая схема процесса: порцию шлака в количестве 3—6 % от массы стали заливают в сталеразливочный ковш, а затем в этот же ковш выпускают сталь.

Струя жидкой стали, падающая в ковш с высоты >3,0 м, эмульгирует шлак, поэтому поверхность раздела «шлак—металл» в десятки раз превышает поверхность взаимодействия металла и шлака в подовых сталеплавильных процессах. Вследствие этого резко возрастает скорость перехода серы из металла в шлак.

Как показывает опыт, за время выпуска плавки (10—15 мин) содержание серы снижается с 0,015—0,033 до 0,005—0,012 %, а фактический коэффициент распределения серы между металлом и шлаком колеблется в пределах от 27 до 77.

Поскольку в таком шлаке практически нет окислов железа, он является одновременно хорошим раскислителем.

Таким образом, обработка стали жидким известково-глиноземистым шлаком способствует снижению содержания серы и кислорода, а также загрязненности металла неметаллическими включениями.

Степень удаления серы колеблется в пределах 50—80 %.

Достаточно высокая степень десульфурации (~40 %) достигается также и при обработке стали в ковше при выпуске твердыми порошкообразными синтетическими шлаками или экзотермическими шлакообразующими смесями. Эффективным методом внеагрегатной десульфурации может служить вдувание в металл порошкообразных материалов (СаО, СаО + CaF2, CaC2, SiCa + СаО) и др. в струе инертного газа. Обычно подача порошков производится при помощи футерованной трубы, погружаемой в металл на глубину до 3 м. Порошкообразные материалы можно вводить в сталь также в виде специально изготовленной порошковой проволоки.

Модифицирование. Одним из эффективных способов уменьшения вредного влияния серы является изменение состава сульфидных неметаллических включений при помощи элементов, образующих с серой тугоплавкие соединения, не растворимые в жидком железе. В первую очередь к таким элементам относятся ЩЗМ и РЗМ.

Применение ЩЗМ и РЗМ

В сталеплавильной практике широко используется способность кальция, магния, бария, церия, лантана и других ЩЗМ и РЗМ и их сплавов образовывать прочные соединения с кислородом и серой, не растворимые в жидком железе. При благоприятных условиях значительная часть образующихся оксидов и сульфидов удаляется из жидкой стали, а остающиеся в металле соединения имеют сферическую форму, которая практически не изменяется в процессе пластической деформации.

Из ЩЗМ в производстве стали наибольшее применение получил кальций, который обычно вводят в хорошо раскисленную сталь в виде сплавов с кремнием, алюминием, барием и др., содержащих до 30 % Са.

В процессе всплывания пары кальция взаимодействуют с кислородом и серой по реакциям:Caг + [O] = CaOтв; Caг + [S] = CaSтв,

Кальций способствует образованию неметаллических включений глобулярной формы.

Из РЗМ в сталеплавильных процессах наиболее широкое применение нашли церий, лантан, их сплавы. РЗМ вводят в сталь в виде мишметалла или ферроцерия (70— 95 % РЗМ). Используют также различные лигатуры.

6 Основы теории кристаллизации

Выплавленную в сталеплавильном агрегате сталь выпускают в разливочный ковш и далее разливают в металлические формы — изложницы или направляют на машины непрерывной разливки. В результате кристаллизации  получают стальные слитки, которые в дальнейшем подвергают обработке давлением.

Технология и организация разливки в значительной степени определяют качество готового металла и количество отходов при дальнейшем переделе стальных слитков: от 6 до 18 %, а иногда и до 25 % всей выплавляемой стали возвращается в переплав из-за дефектов, возникающих в процессе разливки.

6.1 Процессы при выпуске и выдержке металла в ковше

При наклоне конвертера или по желобу из мартеновской или двухванной печи сталь поступает непосредственно в ковш. При этом в ковш попадает также и часть шлака (до 2—3 % от массы металла), который предохраняет металл от быстрого остывания и воздействия на него атмосферных газов.

Процессы, происходящие во время выпуска и разливки стали. Во время выпуска сталь взаимодействует с кислородом и азотом воздуха, шлаком и футеровкой желоба и ковша. В ковше производится раскисление стали, происходит образование и удаление из него неметаллических включений, снижается температура металла и шлака, изменяется их состав.

При выпуске предварительно раскисленного в печи металла, общее содержание кислорода повышается и может достигнуть того значения, которое было до раскисления. Таким образом, предварительное раскисление стали в печи, особенно малоуглеродистой, нецелесообразно.

При выпуске нераскисленной кипящей стали, напротив, отмечается обычно снижение окисленности металла за счет активизации реакции окисления углерода. Выделяющийся на желобе СО экранирует струю от контакта с атмосферой.

При контакте струи с атмосферой возможно поглощение азота. Этому способствует более высокое, чем в плавильном агрегате, парциальное давление N2 и отсутствие защиты слоем шлака.

В целом степень взаимодействия металла с атмосферой определяется удельной величиной поверхности и временем контакта, т. е. характером струи, а также зависит от состава газовой фазы, непосредственно примыкающей к поверхности металла,  и  от его состава.

Существенными источниками кислорода, поступающего в сталь во время выпуска плавки и выдержки металла в ковше, являются также шлак и огнеупорная футеровка. Это подтверждается сравнительно высоким угаром раскислителей, присаженных в ковш, который повышается при увеличении окисленности и количества шлака, попавшего в ковш.

После окончания выпуска сталь выдерживают в ковше перед разливкой. Продолжительность выдержки качественной стали составляет обычно 10—15 мин, выдержка рядовых сталей определяется временем транспортировки ковша до разливочной площадки или МНЛЗ.

Выдержка стали в ковше перед разливкой и в течение разливки способствует всплыванию частиц шлаковых и огнеупорных включений и продуктов раскисления, равномерному распределению элементов-раскислителей, присаженных в ковш, выравниванию температуры, выделению растворенных в стали газов.

В процессе выпуска стали в зависимости от емкости сталеплавильного агрегата металл остывает на 20—50 °С, а во время выдержки в ковше он остывает на 0,3—1,5°С/мин в зависимости от объема ковша.

При температуре стали шамотная футеровка активно взаимодействует с печным шлаком, находящимся в ковше. При этом шлак обогащается кремнеземом и глиноземом, что снижает его основность и вязкость - создаются условия для перехода части фосфора из шлака в металл. В результате к концу разливки его содержание в металле может возрастать.

Концентрация марганца в кипящей стали обычно уменьшается, что связано с его окислением при снижении температуры. В процессе разливки окисляется также до 0,02—0,03 % углерода.

В  спокойной стали  частично окисляется  кремний и практически полностью выгорает алюминий.

Во время разливки стали в слитки происходит ее повторное окисление. При этом общее содержание кислорода может увеличиваться в два-три раза. Наиболее склонен ко вторичному окислению глубокораскисленный металл. Опасность окисления больше при непрерывном литье заготовок, где суммарная площадь контакта металла с атмосферой в струе и промежуточном ковше сравнительно велика.

Для уменьшения вторичного окисления при разливке применяют защиту струи аргоном, разливку через удлиненный стакан под уровень металла в кристаллизаторе, защиту зеркала металла в изложнице и кристаллизаторе шлаковыми смесями или созданием восстановительной  атмосферы в  полости  изложницы и т. п.

6.2 Способы разливки стали

Применяют два основных способа разливки стали: разливку в изложницы и непрерывную разливку. Разливку в изложницы подразделяют на разливку сверху и сифоном.

При разливке сверху (см. рисунок 12) сталь непосредственно из ковша 1 поступает в изложницы 2, устанавливаемые на чугунных плитах — поддонах 3.

Рисунок 12 - Схема  разливки стали сверху, через промежуточный  ковш (а)  и промежуточную воронку (б) (обозначения в тексте)

После заполнения каждой изложницы стопор или шиберный затвор ковша закрывают, ковш транспортируют к следующей изложнице и повторяют цикл разливки.

Иногда при разливке сверху применяют двухстопорные ковши; это позволяет одновременно заполнять две изложницы и сократить длительность разливки. С целью уменьшения напора струи и разбрызгивания металла на стенки изложниц разливку сверху иногда ведут через промежуточные  ковши (рисунок 12, а) или через промежуточные воронки  (рисунок 12, б).

При   сифонной разливке (см. рисунок 13),  основанной на принципе сообщающихся сосудов, сталью одновременно заполняют несколько (от двух до шестидесяти)  изложниц. Жидкая сталь  из  ковша (1) поступает в установленный на поддоне (5) футерованный  изнутри  центровой литник (2), а из него по футерованным каналам поддона (6) в изложницы (4) снизу. Центровой литник и изложницы устанавливают на массивной чугунной плите — поддоне, имеющей канавки, в которые укладывают пустотелый сифонный кирпич (трубки или проводки).

Таким образом, металл из ковша поступает в изложницу, лишь пройдя систему каналов, футерованных огнеупорным кирпичом. После наполнения всех установленных на поддоне изложниц стопор (шиберный затвор) закрывают, и ковш транспортируют  к следующему  поддону и т. п.

Оба способа разливки обладают рядом преимуществ и недостатков. Сифонная разливка имеет следующие преимущества перед разливкой сверху:

  1.  одновременная отливка нескольких слитков сокращает длительность разливки плавки и позволяет разливать в мелкие слитки плавки большой массы;
  2.  удобно применять защиту зеркала металла в изложнице шлаковыми смесями или жидким шлаком;
  3.  поверхность слитка получается чистой, так как металл в изложницах поднимается без разбрызгивания;
  4.  повышается стойкость футеровки ковша и улучшаются условия работы стопора и шиберного затвора вследствие меньшей длительности разливки и уменьшения числа открываний/закрываний;
  5.  есть возможность следить за поведением металла в изложнице и регулировать скорость разливки.

Недостатки сифонной разливки:

  1.  сложность и повышенная стоимость разливки из-за расхода сифонного кирпича, установки дополнительного оборудования и затрат труда на сборку поддонов и центровых;
  2.  дополнительные потери металла в виде литников (0,7—2,5 % от массы разливаемой стали) и возможность потерь при прорывах металла через сифонные кирпичи;
  3.  необходимость нагрева металла в печи до более высокой температуры, чем при разливке сверху, так как он дополнительно охлаждается в каналах сифонного кирпича;
  4.  опасность загрязнения стали неметаллическими включениями из-за размывания сифонного кирпича.

Преимуществами  разливки сверху являются:

  1.  более простая подготовка оборудования к разливке и меньшая стоимость разливки;
  2.  меньше опасность загрязнения стали неметаллическими включениями;
  3.  отсутствие расхода металла на литники;
  4.  температура металла перед разливкой может быть ниже, чем при сифонной разливке.

Вместе с тем, разливке сверху присущи следующие недостатки:

  1.  образование плен на поверхности нижней части слитков из-за разбрызгивания металла при ударе струи о дно изложницы. Застывшие на стенках изложницы и окисленные с поверхности брызги металла не растворяются в поднимающейся жидкой стали, образуя дефект поверхности — плены, которые не свариваются с металлом при прокатке;
  2.  большая длительность разливки;
  3.  из-за большой длительности разливки снижается стойкость футеровки ковша и в связи с большим числом открываний и закрываний ухудшаются условия работы стопора или шиберного затвора.

Оба способа разливки широко применяют. Благодаря простоте и отсутствию потерь металла с литниками часто предпочитают разливку сверху. Несмотря на необходимость дополнительной зачистки поверхности проката, разливка сверху для рядовых марок является более экономичной, чем разливка сифоном. В то же время высококачественные в легированные стали, когда стремятся уменьшить потери дорогостоящего металла на зачистку и получить чистую поверхность слитка, разливают главным образом сифоном. Сифонной разливкой, как правило, получают также слитки массой менее 2,5 т.

6.3 Сущность процесса кристаллизации

Сущность процесса кристаллизации стали заключается в переходе ее из жидкого состояния в твердое.

При понижении температуры увеличивается вероятность существования образований (кристаллов или роев) с упорядоченным строением, а их структура приближается к структуре твердого кристалла. При определенной температуре, называемой температурой кристаллизации, термодинамически одинаково вероятно наличие в системе как жидкой, так и твердой фаз. При этой температуре свободная энергия чистого металла в жидком и твердом состояниях одинакова.

Из схемы (рисунок 14) следует, что выше температуры кристаллизации Т2 > Те устойчивым является жидкое состояние Gж < Gтв и наоборот.

Таким образом, при температуре Те возможно возникновение   кристаллика,   который   при   определенных условиях может расти.

При охлаждении жидкости до температуры плавления кристаллизация начинается не сразу. Возникающие в жидкости кристаллические образования непрочны и легко разрушаются. Для образования устойчивых первичных кристаллов необходимо переохлаждение, т. е. некоторое снижение температуры ниже точки плавления.

Сталь в изложницах кристаллизуется или затвердевает в виде кристаллов древовидной формы — дендритов. Процесс кристаллизации складывается из двух стадий — зарождения кристаллов и последующего их роста. Различают гомогенное и гетерогенное зарождение кристаллов.

Под гомогенным подразумевают образование зародышей кристалла в объеме жидкой фазы, под гетерогенным — на имеющейся межфазной поверхности (на поверхности находящихся в расплаве твердых частиц — например, неметаллических включений, стенок изложниц и кристаллизаторов).

Гомогенное зарождение - происходит следующим образом: в жидком металле вблизи точки кристаллизации вследствие флуктуации энергии, состава и плотности непрерывно образуются группировки атомов с упорядоченной структурой — комплексы или зародыши твердой фазы. Одновременно и непрерывно происходит разрушение большей части их них. С тем, чтобы зародыш стал термодинамически устойчивым, т. е. способным к дальнейшему росту необходимы определенные условия.

Условия  гомогенного  зарождения.

Из   термодинамики   известно, что переход жидкости в твердое состояние и наоборот возможны, если свободная энергия системы при этом уменьшается.

Затвердевание или расплавление в процессе изменения температуры объясняются тем, что при температурах, превышающих точку кристаллизации, меньшей удельной свободной энергией обладает жидкая фаза, а при более низких температурах — твердая.

В   процессе  образования  зародыша  свободная  энергия  системы с одной стороны возрастает в результате затраты энергии на образование поверхности раздела «расплав — зародыш»

и с другой стороны уменьшается в результате перехода части жидкости в твердую фазу, у которой уровень свободной энергии ниже

где σ – межфазное натяжение на границе раздела фаз (удельная поверхностная энергия).

При температуре кристаллизации свободная энергия жидкой и твердой фаз равны и образование зародыша невозможно, так как нет источника для компенсации затрат энергии на образование поверхности раздела фаз. Поэтому для образования зародыша необходимо некоторое переохлаждение расплава.

При данной величине переохлаждения термодинамически устойчивыми, т. е. способными к дальнейшему росту, оказываются те зародыши, размер которых превысит так называемый «критический». Критический размер это такой, начиная с которого дальнейший рост сопровождается снижением суммарной свободной энергии образования зародыша (рисунок 15).

Величину критического радиуса зародыша определяют из соотношения:

где σ – межфазное натяжение на границе раздела жидкой и твердой фаз;

Ткр — температура начала кристаллизации;

ΔТ — величина переохлаждения;

QKp — скрытая теплота кристаллизации.

Таким образом, на процесс кристаллизации решающее влияние оказывают степень переохлаждения и удельная поверхностная энергия на границе кристалл—жидкость. При увеличении степени переохлаждения критический радиус зародыша уменьшается, т. е. термодинамически устойчивыми становятся более мелкие зародыши. Аналогичное влияние оказывает уменьшение величины поверхностной энергии σ.

Приближенные расчеты показывают, что гомогенное зарождение кристалла ряда металлов возможно при переохлаждении, равном 0,2•Ткр, т. е. около 350 °С для железа. Уменьшение переохлаждения до 200 °С снижает вероятность образования равновесного зародыша при гомогенной кристаллизации почти в 105 раз. Однако величина переохлаждения в стальном слитке обычно не превышает 10 °С. Следовательно, кристаллизация по гомогенному механизму на практике не реализуется.

В реальных условиях механизм затвердевания имеет гетерогенный характер, когда образование и рост зародыша происходят на уже имеющейся поверхности раздела – центрах кристаллизации. Процесс зарождения и роста кристаллов в этом случае существенно облегчается - в реальных условиях сталь начинает кристаллизоваться при переохлаждении в несколько градусов.

В  формировании  структуры слитка не меньшую  роль  играет последующий  рост  кристаллов,   который  обусловливается  прежде всего  интенсивностью  и  направленностью отвода тепла.

Рост кристаллов. Зарождающийся кристалл имеет правильную форму, определяемую типом кристаллической решетки твердого металла. Однако вскоре после зарождения правильный рост возникшего кристалла прекращается и начинается преимущественный рост его вершин, т, е. ветвей дендрита. Объясняется это следующим: количество тепла и примесей сплава, выделяющихся при кристаллизации, будет минимальным у вершин и максимальным у центра граней кристалла, что препятствует   дальнейшей   кристаллизации   у  граней.   От вершин кристалла вырастают оси первого порядка (стволы дендрита), на них перпендикулярно направленные оси второго порядка (ветви), на которых аналогичным образом развиваются оси третьего порядка и т. д. Появление все новых осей и их постепенное утолщение приводят к формированию сплошного  кристалла   (дендрита).

При отсутствии направленного теплоотвода оси во всех направлениях развиваются примерно одинаково и кристалл получается равноосным. При направленном теплоотводе кристаллы имеют вытянутую форму.

Вид структуры слитка определяется условиями охлаждения. Качественная связь между скоростью образования зародышей V0.3, линейной скоростью кристаллизации Vл. к и величиной переохлаждения представлена на рисунке 16.

При высокой степени переохлаждения (при первоначальном контакте жидкого металла с холодной стенкой изложницы или кристаллизатора) число образовавшихся зародышей велико, а скорость роста зерна ограничена. В этом случае формируется мелкозернистая структура. По мере уменьшения переохлаждения скорость образования зародышей снижается быстрее, чем скорость их линейного роста. Кристаллы будут развиваться до больших размеров. При степени переохлаждения, равной ΔТ2, когда образуется мало зародышей, а скорость роста зерна еще велика – структура будет крупнозернистой.

Скорость роста кристаллов определяется в первую очередь интенсивностью теплоотвода; чем больше скорость теплоотвода и чем больше переохлаждение жидкого металла, тем больше будет скорость роста. Рост кристаллов протекает одинаково как в случае гомогенного, так и в случае гетерогенного их зарождения.

Интервал кристаллизации. Сталь как многокомпонентный раствор кристаллизуется в определенном интервале температур путем так называемой «избирательной кристаллизации». При температуре, соответствующей началу интервала кристаллизации образуются и начинают расти оси кристаллов, обедненные углеродом и другими составляющими стали, а в остающемся жидком металле их содержание возрастает. Поэтому понижается температура затвердевания жидкой фазы и последующие оси кристалла формируются при все более низкой температуре, а содержанке примесей в них возрастает.

Величина интервала кристаллизации определяется составом стали и условиями затвердевания слитка. Она возрастает при увеличении содержания в стали углерода и легирующих элементов. При увеличении интервала кристаллизации возрастает степень химической неоднородности слитка.

Скорость затвердевания слитка. При затвердевании стали в изложнице тепло отводится через ее стенки, поэтому зарождение и рост кристаллов начинаются у стенок изложницы, а толщина затвердевшего слоя непрерывно возрастает в направлении к центру слитка.

7 Разливка стали в изложницы

7.1 Оборудование для разливки стали

К оборудованию для разливки стали относят: сталеразливочный ковш, разливочный стакан, стопор или шиберный затвор, промежуточные воронки и ковши, изложницы, поддоны, прибыльные надставки, литниковую систему и др.

Сталеразливочный ковш представляет собой выполненный из сальных листов футерованный сосуд, имеющий форму усеченного конуса, расширяющегося кверху. Емкость ковшей находится в пределах 5—480 т; помимо жидкой стали ковш должен вмещать немного шлака (2—3 % от массы металла), который предохраняет металл от быстрого охлаждения во время разливки.

Стойкость футеровки ковша в зависимости от ее вида составляет от 10 до 100 плавок.

Для  разливки  стали  из  ковша  по  изложницам служит стакан со стопором или шиберным, а  иногда поворотным  затворами.

Разливочный стакан вставляют в днище ковша в специальный гнездовой кирпич; иногда вместо гнездового кирпича делают набивное гнездо, заполняя зазор между стаканом и футеровкой днища  огнеупорной   массой.   «Диаметр  стакана» составляет 25— 120 мм, высота стаканов в зависимости от емкости ковша равна 120— 440 мм.

Стопор служит для закрывания и открывания отверстия стакана. Он представляет собой металлический стернь  диаметром 40—60 мм, защищенный от воздействия жидкой стали и шлака шамотными трубками (катушками). Нижний конец стержня имеет нарезку, на которую навинчивают огнеупорную пробку из высокоглиноземистого шамота. При  длительной разливке стержень стопора теряет прочность и может изгибаться, поэтому иногда применяют воздухоохлаждаемые стопоры. С целью ускорения разливки иногда применяют двухстопорные ковши. Стопор служат одну разливку.

Тяжелые условия службы стопора, особенно при длительной выдержке больших масс металла в ковше, обработке его в ковше инертными газами и вакуумом, привели к необходимости создания шиберных затворов, расположенных снаружи ковша.

Шиберный затвор работает в менее тяжелых условиях, чем стопор (стопор находится в объеме жидкой стали), и поэтому более надежен в эксплуатации. Быстрота установки шиберного затвора и высокая надежность обусловили его широкое внедрение в сталеплавильных цехах. В отечественной практике для изготовления шиберных затворов применяют плиты из корунда и периклаза, позволяющие разливать до трех плавок.

Промежуточные  ковши применяют  при разливке стали на МНЛЗ и при разливке спокойной стали сверху для уменьшения разбрызгивания струи металла при ее ударе о дно изложницы, что позволяет уменьшить количество плен на слитках.

Промежуточные ковши служат буферной емкостью, позволяющей непрерывно разливать сталь из двух и более сталеразливочных ковшей методом «плавка на плавку», а главное поддерживать постоянным ферростатический напор и скорость разливки металла. Ковши снабжены стопорами или шиберными затворами и позволяют отливать до четырех слитков одновременно.

Ковш имеет стальной кожух и футерован изнутри шамотным кирпичом. В днище установлен один или несколько стаканов, снабженных стопорами. Для уменьшения теплопотерь ковш накрывают футерованной крышкой. Емкость промежуточных ковшей достигает 70-80 т.

Промежуточная воронка применяется при разливке спокойной стали сверху для уменьшения разбрызгивания струи металла; имеет металлический кожух, который футеруют огнеупорной  массой  из  шамотного порошка и огнеупорной глины на жидком стекле с добавкой графита; в нижней части воронки устанавливают разливочный  стакан  диаметром от 18 до 40 мм.  Воронки либо устанавливают  на прибыльную  часть изложницы, либо подвешивают к сталеразливочному ковшу.

Изложницы

Изложницы отливают из ваграночного чугуна следующего состава, %: 3,3—4,0 С; 0,9—2,2 Si; 0,4—1,0 Mn; <0,20 P и <0,12 S.

Размеры изложниц зависят от массы и размеров слитка. Масса слитков, отливаемых для прокатки на станах, изменяется в пределах от 200 кг до 30 т, при этом для прокатки на блюмингах отливают слитки массой до 13 т, а для прокатки на слябингах —до 30 т. Масса слитков для поковок доходит до 350 т.

Более экономична разливка стали в крупные слитки, так как при этом уменьшается ее продолжительность, сокращаются затраты труда, расход огнеупоров и разливочного оборудования, уменьшаются потери металла в виде скрапа и литников, возрастает производительность прокатных станов. Вместе с тем при росте массы слитка заметно усиливается зональная химическая неоднородность, поэтому для качественных сталей массу слитка ограничивают.

Конфигурация изложниц, характеризуемая формой поперечного и продольного сечений, определяется сортаментом стали и дальнейшим переделом слитка.

Поперечное сечение изложниц может быть квадратным, прямоугольным, круглым, многогранным (см. рисунок 17). Слитки квадратного сечения идут на сортовой прокат; слитки прямоугольного сечения при отношении их ширины b к толщине h менее 1,5 для получения как листа, так и сортового проката; плоские слитки при отношении b/h в пределах от 1,5 до 3,0 — для прокатки на лист. Слитки круглого сечения используют для изготовления труб, бандажей, колес. В многогранные изложницы отливают слитки для кузнечных поковок.

По форме продольного сечения изложницы бывают двух типов: с уширением кверху для разливки спокойной стали (см. рисунок 18, а) и с уширением книзу для разливки кипящей и полуспокойной стали (см. рисунок 18, б). Для разливки кипящей и полуспокойной стали иногда применяют изложницы бутылочной формы (см. рисунок 18, в), верхнее отверстие которых после наполнения изложницы сталью закрывают пробкой или крышкой. Быстрое застывание металла в суживающейся части бутылочной изложницы обеспечивает снижение химической неоднородности стали но сравнению с разливкой в обычные сквозные изложницы.

Изложницы,  уширяющиеся  книзу, делают сквозными (без дна), а изложницы, уширяющиеся кверху — чаще всего с дном. В дне изложниц находится отверстие. При разливке сифоном  в  него  вставляют шамотный  стаканчик,   через  который  сталь поступает в изложницу, а при разливке сверху — стальной вкладыш (пробку),   предохраняющий  дно  изложницы от  размывания  струей металла.

Внутреннюю поверхность изложниц иногда делают волнистой. При этом увеличивается поверхность соприкосновения слитка с изложницей, быстрее нарастает толщина затвердевшей корочки в начальный момент кристаллизации и снижается пораженность слитков продольными наружными трещинами.

Важной характеристикой слитка и изложницы является величина отношения высоты Н изложницы (слитка) к ее среднему внутреннему диаметру D. Увеличение значения H/D позволяет увеличивать производительность прокатных станов, а также сократить длительность затвердевания слитка, что способствует уменьшению ликвации. Однако увеличение этого отношения вызывает увеличение осевой рыхлости и повышает склонность к образованию продольных трещин вследствие возрастания ферростатического давления на корочку кристаллизующегося слитка. Оптимальная величина отношения H/D составляет для слитков спокойной углеродистой стали 3,0—3,5, а для легированной и качественной углеродистой стали 2,5—3,3. Вместе с тем, для слитков, сердцевина которых удаляется при последующем переделе, а также для слитков, прокатываемых на мелкие профили (диаметром < 100 мм), т. е. при повышенных степенях обжатия, применяют изложницы, у которых отношение H/D более 3,5. В этом случае для повышения плотности сердцевины слитка увеличивают конусность стенок изложницы.

В изложницах для крупных слитков кипящей, а также полуспокойной стали величина отношения H/D должна составлять 3,0—3,5; для мелких слитков (< 1 т) она достигает 5—7. Увеличение отношения H/D по сравнению со слитками спокойной стали допустимо в связи с тем, что в слитках кипящей и полуспокойной стали не образуется осевой рыхлости. В то же время для кипящей стали важно ограничивать абсолютную величину высоты слитка и изложницы. Слишком большая высота ведет к увеличению ферростатического давления в нижней части затвердевающего слитка, что затрудняет кипение металла и способствует уменьшению толщины здоровой корочки.

Большое влияние на плотность макроструктуры и развитие осевой рыхлости в слитках спокойной стали оказывает конусность стенок изложниц. Чем больше конусность стенок изложницы и конусность слитка, тем выше плотность его структуры и тем меньше развита осевая рыхлость. Однако увеличение конусности вызывает неравномерные нагрузки на валки прокатного стана, что существенно затрудняет прокатку слитков. Поэтому конусность стенок изложниц для спокойной стали выбирают в пределах 2—4 % на сторону. Для слитков, идущих на ковку, конусность стенок изложниц увеличивают до 3—6 %. В листовых изложницах для спокойной стали конусность широких сторон принимают равной   3—3,5 %, а конусность узких граней во избежание трапецевидности листов уменьшают вдвое.

В связи с отсутствием в слитках кипящей и полуспокойной стали осевой усадочной рыхлости   конусность  стенок расширяющихся книзу изложниц меньше, чем у изложниц для спокойной стали. Она составляет 0,9—1,3 %, что обеспечивает свободное снятие изложницы со слитка.

Толщину стенок изложниц выбирают исходя из условий обеспечения механической прочности изложницы и ее обычно принимают равной  примерно 20 %  от величины  поперечного   размера слитка. Стойкость изложниц   составляет   20—60   плавок (разливок), расход  изложниц (чугуна) равен 1,0—3,5 % от  массы  разливаемой  стали.

Прибыльные надставки устанавливают на расширяющиеся кверху изложницы при разливке спокойной стали; они могут быть стационарными    (рисунок 19,   а,   б)    и    плавающими (рисунок 19, в). Футеровка или теплоизоляционные вкладыши надставок замедляют охлаждение  верха слитка, что  способствует выводу сюда  усадочной раковины.

Футеровка прибыльной надставки выполняется из шамотного кирпича или из массы на основе шамотного  порошка с огнеупорной  глиной.

Для уменьшения теплоотдающей поверхности, облегчения снятия надставки со слитка уменьшения расхода металла надставку сужают кверху (конусность стенок составляет 10—18 %). Масса прибыльной части и соответственно величина головной обрези крупных слитков рядовой стали составляет при использовании таких надставок 12—16 % обшей массы слитка.

Теплоизоляционные вкладыши изготавливают из песка с добавкой бумажных отходов, глины и связующих, из асбестита со связующими и других материалов. В связи с низкой теплопроводностью вкладышей надставки со вкладышами по сравнению с футерованными имеют меньшие высоту и объем и при их использовании величина головной обрези слитков снижается на 2—5 %.

При отливке крупных слитков применяют плавающие надставки (см. рисунок 19, в). Нижнее основание такой надставки входит в изложницу; до начала разливки надставку удерживают на изложнице с помощью деревянных прокладок, которые после наполнения изложницы металлом удаляют. Достоинство этих надставок заключается в возможности их перемещения в изложнице вместе со слитком при его усадке, что исключает подвисание слитка и образование поперечных трещин.

Поддоны служат для установки сквозных изложниц при разливке сверху и изложниц с центровой при сифонной разливке. Поддон представляет собой литую чугунную плиту толщиной 100—200 мм. Верхняя рабочая поверхность поддона должна быть гладкой; это обеспечивает плотное прилегание изложницы к поддону и предотвращает прорыв жидкого металла под изложницу.

В поддонах для сифонной разливки (см. рисунок 20) делают углубление в центре и расходящиеся от пего открытые сверху каналы прямоугольного сечения для укладки сифонного кирпича. Если при разливке сверху применяют изложницы без дна, то в поддоне делают выемку, в которую укладывают сменный вкладыш из стали и иногда из огнеупорного  кирпича, предотвращающий размывание поддона струей металла.

При разливке сверху применяют поддоны, размер которых позволяет установить одну или две изложницы; при сифонной разливке двух-, четырех- и многоместные поддоны. Расход поддонов составляет 0,1—1 % от массы разливаемой стали.

Сифонный кирпич предотвращает размывание поддона, центровой и дна изложниц жидкой сталью при разливке. Для обеспечения плотности сочленения сифонные кирпичи делают замковыми (выступ каждого последующего кирпича должен входить паз предыдущего). Величина диаметра отверстия в сифонных кирпичах, укладываемых в поддон, обычно составляет 30—50 мм; диаметр отверстия   центровых  труб  равен  70—100 мм. После     разливки    каждой    плавки    сифонный    кирпич    заменяют.

7.2 Подготовка оборудования к разливке

В современных сталеплавильных цехах сталь разливают в изложницы, установленные на тележках (железнодорожных платформах). Состав с подготовленными изложницами перед выпуском стали из печи подают в разливочный пролет сталеплавильного цеха. После окончания разливки для предотвращения возникновения ликвационных дефектов в затвердевающих слитках состав выдерживают в разливочном пролете в течение 20—120 мин (в зависимости от массы слитка и марки разливаемой стали). Далее состав отправляют в стрипперное отделение цеха, оборудованное специальными кранами для снятия прибыльных надставок и освобождения слитков от изложниц, а затем в здание нагревательных колодцев прокатного цеха.

Подготовка изложниц и надставок. После освобождения от слитков изложницы охлаждают до температуры 80—110 ˚С либо путем длительной выдержки на воздухе, либо в душирующих устройствах, обеспечивающих мягкое охлаждение за счет подачи на поверхность изложницы распыленной воды.

Далее внутреннюю поверхность изложниц очищают от приварившихся брызг и частиц металла, а также от окисленных пленок (нагара). Чистят изложницы металлическими щетками или струями воды, подаваемой на внутреннюю поверхность изложницы под большим давлением. После чистки изложницу продувают сжатым воздухом, а затем внутреннюю поверхность изложниц смазывают.

Смазка предотвращает прилипание брызг металла при разливке к стенкам изложницы, а также приваривание слитка к изложнице. В качестве смазки применяют обезвоженную каменноугольную смолу, каменноугольный лак, смесь каменноугольной смолы с лаком, порошкообразный графит, смешанный с водой.

При соприкосновении с жидким металлом смазка сгорает. При выгорании смазки в изложнице создается восстановительная атмосфера, в результате чего уменьшается окисление поверхности металла во время разливки. Кроме того, газы, образующиеся при сгорании смазки, отгоняют от стенок изложницы пленки окисленного металла, что улучшает чистоту поверхности слитка. Температура стенок изложницы перед смазкой должна быть 80—110°С. При более высокой температуре смазка выгорит до начала разливки; при более низкой – слой смазки получается чрезмерно толстым и неравномерным.

Подготовка футеруемых прибыльных надставок заключается в нанесении на внутреннюю поверхность горячей прибыльной надставки огнеупорной массы, которую закрашивают графитовой «краской». «Краска» предотвращает приваривание футеровки надставки к слитку. При необходимости, для быстрого высыхания нанесенной обмазки, подготовленную надставку просушивают с помощью газовых горелок. Подготовка  надставок  с  теплоизоляционными вкладышами   заключается   в установке в   корпус  надставки   новых   вкладышей.

Подготовка поддонов. Поддоны для сифонной разливки после снятия изложниц и слитков очищают от скрапа, а из каналов поддона удаляют литники и отработанный сифонный кирпич. Далее поддон продувают сжатым воздухом и набирают новым сифонным кирпичом. Температура поддона перед наборкой должна быть не ниже 80 — 100°С для обеспечения быстрого высыхания огнеупорной массы. После наборки каналы поддона продувают сжатым воздухом.

Подготовка поддонов для разливки сверху заключается в том, что после снятия слитков и изложниц поддон очищают от скрапа, шлака и мусора и продувают сжатым воздухом.

Подготовка состава для разливки сифоном включает подготовку поддонов, изложниц, центровых и прибыльных надставок (в случае разливки спокойной стали) и сборку их. Поддон очищают от мусора и скрапа, затем в углубление для звездочки и каналы засыпают сухой песок и устанавливают сифонный кирпич, центровые собирают на стеллажах в специально отведенном месте. После сборки их сушат, прочищают и устанавливают на поддон.

Сборка составов для разливки сверху: на очищенные поддоны устанавливают смазанные изложницы  и  на них,  если это необходимо, прибыльные надставки.

7.3 Строение стальных слитков

Классификация стали по степени раскисленности

Сталь в зависимости от технологии выплавки и, главным образом, от степени раскисленности подразделяют на спокойную, кипящую и полуспокойную. Спокойную сталь обычно раскисляют марганцем, кремнием и алюминием. Активность кислорода при этом понижается настолько, что полностью прекращается реакция окисления углерода. Разливка и кристаллизация спокойной стали идут без заметного газовыделения. Кипящую сталь лишь частично раскисляют марганцем и в процессе ее разливки и затвердевания в изложнице активно идет процесс окисления углерода по реакции [О] + [С] = {СО}. Обильное выделение пузырьков СО и сопутствующих им водорода и азота создает впечатление кипения стали. Полуспокойная сталь по степени раскисленности и, соответственно, по интенсивности газовыделения в процессе кристаллизации занимает промежуточное положение между спокойной и кипящей.

Особенности поведения стали в изложнице обусловливают различие в технологии разливки и строении слитка той или иной стали.

Слиток спокойной стали

Строение слитка спокойной стали представлено на рисунке 21.

Наружная зона образуется в момент соприкосновения жидкой стали с холодными стенками изложницы. Резкое переохлаждение металла вызывает образование очень большого числа зародышей и их быстрый рост, в связи с чем кристаллы не успевают вырасти до значительных размеров и принять определенную ориентацию. Толщина корковой мелкокристаллической зоны 6—15 мм, поскольку охлаждение жидкого металла с большой скоростью длится очень недолго.

В дальнейшем скорость теплоотвода и охлаждения существенно падают, так как отвод тепла замедляют корка затвердевшего металла, нагрев стенок изложницы и воздушный зазор, образующийся между стенками изложницы и слитком вследствие его усадки. Вследствие замедления теплоотвода уменьшается переохлаждение и новых кристаллов почти не образуется. Продолжается рост кристаллов корковой зоны, причем растут главные оси кристаллов, направленные перпендикулярно стенке изложницы (поверхности охлаждения). Таким образом, формируется зона столбчатых  кристаллов,  вытянутых  параллельно направлению теплоотвода. В крупных слитках с большим поперечным сечением наблюдается отклонение кристаллов к головной части слитка (к тепловому центру слитка).

Протяженность столбчатых кристаллов возрастает при увеличении перегрева жидкой стали, при росте скорости отвода тепла от затвердевшей части слитка и увеличении поперечного сечения слетка; она зависит также от состава стали (ее теплопроводности).

В центральной части слитка направленный теплоотвод почти не ощущается, поскольку здесь мала скорость отвода тепла и, кроме того, затвердевающий здесь металл удален от всех стенок изложницы на одинаковое расстояние.  Поэтому образующиеся  кристаллы не имеют определенной ориентировки и получаются равноосными. Вследствие замедленного теплоотвода и отсутствия заметного переохлаждения  количество вновь образующихся  кристаллов невелико, поэтому структура металла крупнозернистая.

Образование «конуса осаждения» в нижней части слитка обычно объясняют опусканием на дно изложницы кристаллов, зародившихся в объеме жидкого металла у фронта кристаллизации, а также обломившихся под воздействием потоков жидкого металла непрочных ветвей столбчатых кристаллов. Это опускание кристаллов происходит в силу разности плотностей затвердевшего и жидкого металла.

Важной особенностью затвердевания слитка является наличие двухфазной зоны между жидким и полностью затвердевшим металлом. Это зона, где сосуществуют оси  растущих  кристаллов  и  незатвердевший  металл   в  межосных   пространствах. При увеличении протяженности двухфазной зоны возрастает время пребывания металла в двухфазном состоянии и сильнее развивается  химическая неоднородность.

Необходимо отметить наличие в затвердевающем слитке конвективных потоков жидкого металла. У фронта кристаллизации поток направлен вниз, в осевой части слитка — вверх. Движение вниз возникает потому, что у фронта кристаллизации жидкий металл переохлажден и имеет большую плотность, чем остальная его масса. Скорость потоков достигает 0,35 м/с; она тем больше, чем выше перегрев жидкой стали, поскольку при этом возрастает разность в температуре и плотности металла в объеме слитка и у фронта кристаллизации, По мере затвердевания слитка величина перегрева жидкого металла, а с ней и интенсивность потоков снижаются. Наличие конвективных потоков ведет к усилению химической неоднородности слитка.

Усадочная раковина в слитке спокойной стали

В верхней части слитка находится полость — так называемая усадочная раковина (см. рисунок 12). Причиной ее образования является усадка стали в процессе затвердевания, т. е. увеличение плотности при переходе из жидкого в твердое состояние. Величина усадки в зависимости от состава стали изменяется в пределах 2,0—5,3 %. Усадочная пустота в слитке всегда образуется в месте затвердевания последних порций металла. Раковина бывает закрытой, если в прибыльной надставке из-за недостаточной теплоизоляции затвердевает верхний слой металла; при применении экзотермических засыпок и обогреве верха слитка усадочная раковина получается открытой.

Ту часть слитка, в которой расположена усадочная раковина, отрезают при прокатке и отправляют в переплав. Величину усадки, определяемую природой стали, уменьшить нельзя. Поэтому, чтобы свести обрезь металла к минимуму, усадочную раковину концентрируют в верхней части слитка и стремятся уменьшить глубину ее проникновения в слиток. Для этого в обычной практике прибегают к следующим мерам, обеспечивающим более позднее затвердевание верхней части слитка:

1) спокойную сталь, как правило, разливают в изложницы, уширяющиеся кверху. Большая масса жидкого металла в верхней части слитка способствует замедленному его охлаждению;

2) теплоизолируют боковые поверхности верха слитка. Обычно для этого на изложницу устанавливают прибыльную надставку, которую при разливке как и изложницу заполняют жидким металлом. Боковые стенки надставки футерованы огнеупорами или снабжены теплоизоляционными вставками, благодаря чему охлаждение металла здесь замедляется;

3) после наполнения слитка поверхность жидкого металла в прибыльной надставке засыпают теплоизолирующими или разогревающими смесями. В качестве теплоизолирующих засыпок используют асбест, обожженный вермикулит, коксо-шлаковую смесь и др. Более эффективно применение разогревающих смесей — люнкеритов, которые представляют собой порошкообразную смесь горючих и нейтральных компонентов. В качестве первых используют алюминий (14—28 %), ферросилиций (0—15 %), коксик или древесный уголь (0—50 %), в качестве вторых — шамот, боксит, вермикулит. Расход люнкернта составляет 0,5—2,0 кг/т стали.

При применении перечисленных мер величина головной обрези слитков спокойной углеродистой стали составляет 12—16 %, а для мелких слитков и легированных сталей достигает 20 % (донная обрезь слитков спокойной стали равна 1—4 %).

Слиток кипящей стали

В процессе разливки кипящей стали и после ее окончания сталь в изложнице «кипит», т. е. происходит окисление углерода по реакции [С] + [О] = СО с выделением пузырьков окиси углерода.

Окисление углерода и образование пузырьков СО происходит на поверхности формирующихся при затвердевании стали кристаллов. Значительная часть пузырей СО, выделяющихся при кипении остается в слитке. В дальнейшем они завариваются при прокатке.

Для уменьшения неоднородности состава готовой стали кипение вскоре после наполнения изложницы прекращают, накрывая слиток массивной металлической крышкой (механическое закупоривание) или раскисляя металл в верхней части изложницы алюминием (химическое закупоривание).

В слитках кипящей стали не образуется концентрированной усадочной раковины. Усадка здесь рассредоточена по многочисленным газовым полостям. Форма слитка кипящей стали отличается от формы слитка спокойной стали. Поскольку в слитке отсутствует усадочная раковина нет необходимости применять изложницы, расширяющиеся кверху. Кипящую сталь разливают в сквозные изложницы, расширяющейся книзу. Это упрощает процесс раздевания слитков — изложницу просто снимают с затвердевшего слитка.

Механически закупоренный слиток кипящей стали характеризуется расположением газовых пузырей в определенном порядке. Структура механически закупоренного слитка кипящей стали, приведена на рисунке 22, а.

:

Толщина наружной корки без пузырей может изменяться от 2—3 до 40 мм и зависит от того удаляются или нет из металла образующиеся при ее затвердевании пузырьки СО. В начале затвердевания корковой зоны высота вышележащего слоя металла и создаваемое им ферростатическое давление малы, благодаря чему при достаточной окисленности стали образуется большое число пузырьков СО. Их всплывание создает поток, интенсивность которого достаточна для отрыва пузырьков, застревающих между осями растущих кристаллов, что обеспечивает формирование беспузыристого слоя металла.

Если же окисленность металла мала, а ферростатическое давление вследствие большой скорости разливки быстро нарастает, то зарождение пузырей затруднено, их образуется мало и не создается сильного потока всплывающих пузырей. В этих условиях пузыри, образующиеся в межосных пространствах кристаллов, остаются в металле, т, е. начинается рост сотовых пузырей.

Таким образом, чем ниже окисленностъ стали и чем выше скорость наполнения изложницы, тем ниже будет интенсивность кипения и меньше толщина беспузыристой корки.

Из оставшихся в металле пузырей по мере дальнейшего выделения окиси углерода формируются вытянутые сотовые пузыри, что связано с образованием в это время зоны вытянутых столбчатых кристаллов. Идет сравнительно быстрый рост главных осей столбчатых кристаллов, между которыми скапливается выделяющаяся окись углерода. Длина сотовых пузырей составляет от 35 до 70—100 мм.

В верхней части слитка сотовых пузырей нет, так как они вымываются потоком газа, поднимающегося снизу. Высота зоны сотовых пузырей обычно равна 1/2—2/3 высоты слитка; она возрастает при повышении скорости наполнения изложницы, снижении интенсивности кипения и уменьшения окисленности металла.

Прекращение роста сотовых пузырей связано с тем, что после сформирования малотеплопроводной пузыристой зоны скорость отвода тепла заметно снижается и замедляется скорость роста главных осей столбчатых кристаллов, между которыми задерживались пузырьки СО. Образующиеся газы вымываются с более ровного фронта кристаллизации и формируется плотная промежуточная зона, которая состоит из неориентированных кристаллов небольших размеров.

После накрывания слитка крышкой (замораживания его верха) кипение прекращается, поскольку пузырьки СО не могут образовываться из-за повышения давления внутри закупоренного слитка. Вследствие прекращения циркуляции формировавшиеся в момент закупоривания пузыри фиксируются на границе затвердевания, образуя цепочку вторичных пузырей, равноудаленных от стенок изложницы (если крышку накрывают рано, в период роста сотовых пузырей, то после закупоривания прекращается их рост; вторичные пузыри образуются рядом с сотовыми, а зона плотного металла между сотовыми и вторичными пузырями в слитке отсутствует).

Затвердевание центральной части слитка идет без заметного газовыделения и циркуляции металла. Лишь в результате усадки кристаллизующейся стали давление внутри слитка немного снижается и создаются условия для образования отдельных пузырей. Скопление их в верхней части слитка обусловлено повышением содержания здесь кислорода и углерода, вследствие ликвации, а также всплыванием пузырей снизу. Это скопление пузырей образует головную рыхлость, которая в осевой части слитка может распространяться на глубину до 25 % его высоты.

Верх слитка с пузырями и скоплением серы и фосфора вследствие их ликвации отрезают при   прокатке; величина головной обрези составляет 5—9 % от массы слитка для рядовой стали и достигает 10—13 %  для качественной стали.

Химически закупоренный слиток (см. рисунок 22, б)  имеет в  нижней части зону коротких сотовых  пузырей и  в  верхней — скопление усадочных пустот и пузырей, над которыми, как правило, расположен мост плотного металла. До начала закупоривания и во время разливки сталь в изложнице кипит, формируется  наружная  беспузыристая корка и начинается рост сотовых пузырей так же, как в слитке при механическом закупоривании. Толщина здоровой корки такая же, как в механически закупоренном слитке 2-40мм и определяется уровнем окисленности стали и скоростью подъема металла в изложнице.

В течение 1—1,5мин после окончания наполнения изложницы производят закупоривание слитка алюминием (иногда ферросилицием). Вводимый алюминий связывает растворенный в стали кислород, поэтому прекращается кипение и рост сотовых пузырей. Длина сотовых пузырей зависит от времени химического закупоривания: их длина тем меньше, чем раньше был введен алюминий.

Расход алюминия на закупоривание выбирают таким, чтобы при дальнейшем затвердевании наблюдалось незначительное газовыделение, которое должно компенсировать усадку стали и предотвращать образование концентрированной усадочной раковины. Пузыри СО образуются в верхней части слитка, поскольку здесь вследствие ликвации повышается концентрация кислорода и углерода. Глубина сужающейся книзу зоны скопления пузырей и усадочных пустот может достигать 30—45 % высоты слитка.

При оптимальной раскисленности (оптимальном расходе алюминия на закупоривание) над областью усадочной рыхлости образуется «мост» плотного металла толщиной около 10 %  высоты слитка. Он изолирует пустоты от атмосферы, благодаря чему последние завариваются при прокатке. Головная обрезь слитка при этом составляет 3,5—6 %.  Показателем оптимальной степени раскисленности является формирование выпуклой гладкой поверхности слитка.

При недостаточной раскисленности металла наблюдаются прорывы поверхности слитка пузырями СО. Сплошность верхнего «моста» плотного металла нарушается и возрастает величина головной обрези, так как часть полостей в головной части слитка не заваривается при прокатке из-за окисления их внутренней поверхности. Если металл перераскислен, то образуется недостаточно изолированная сверху глубокая усадочная раковина со скоплением ликватов и неметаллических включений. Головная обрезь при этом сильно возрастает, так как в прокате образуются несплошности в местах скопления ликватов и включений, а также в результате окисления внутренней поверхности раковины.

Толщина здоровой корки — важный критерий качества слитков кипящей стали. Эта толщина может достигать 40 мм и не должна быть менее 8 мм. Более тонкая корка может окисляться при нагреве слитков перед прокаткой. Сотовые пузыри при этом обнажаются, их поверхность окисляется и поэтому они не завариваются при прокатке. В результате на поверхности проката образуются рванины.

Здоровая корка формируется во время наполнения изложницы металлом и ее толщина определяется интенсивностью кипения стали в этот период. Интенсивность кипения и толщина здоровой корки будут тем больше, чем выше окисленность жидкой стали и чем ниже скорость наполнения изложницы металлом.

Толщина здоровой корки зависит и от состава стали. Поскольку углерод и марганец снижают количество растворенного в стали кислорода (ее окисленность), получение достаточно толстой здоровой корки в сталях с повышенным содержанием этих элементов затруднено. Поэтому кипящие стали обычно содержат не более 0,27 % С и 0,60 % Мn.

Как показал опыт, окисленность жидкой стали, получаемая при существующих методах выплавки, позволяет разливать кипящую сталь со скоростью, не превышающей 1,0 м/мин; при большей скорости наполнения изложницы толщина здоровой корки получается менее допустимой (8—10 мм).

Если необходимо разливать сталь с большей скоростью, то прибегают к использованию так называемых интенсификатеров кипения. В изложницу во время разливки вводят порошкообразные смеси, содержащие оксиды железа. Поступающий из интенсификатора в сталь кислород обеспечивает повышение интенсивности кипения и позволяет получать слиток с достаточной толщиной здоровой корки при скоростях разливки до 2,0—2,5 м/мин.

Для ускорения разливки применяют сочетание скоростной разливки с химическим закупориванием: разливку ведут со скоростью 3—5 м/мин; при этом образование пузырей начинается у поверхности слитка, т. е. здоровая корка не образуется. Благодаря раннему химическому закупориванию размеры пузырей малы и при нагреве под прокатку наружный слой слитка с пузырями окисляется, вследствие чего на поверхности проката рванин не образуется.

Слиток полуспокойной стали

Полуспокойная сталь по степени раскисленности занимает промежуточное положение между спокойной и кипящей сталью. Ее раскисляют как правило в ковше, вводя силикомарганец, ферромарганец и ферросилиций в количестве, обеспечивающем получение заданного содержания в стали марганца и введение 0,06—0,13 % Si.

Полуспокойную сталь разливают в сквозные расширяющиеся книзу или в бутылочные изложницы. При затвердевании в изложнице наблюдается «искрение» — образование и выделение небольшого  количества  монооксида  углерода. Длительность искрения служит показателем оптимальной степени  раскисленности   стали и должна составлять 10—40 с.

В верхней части слитка полуспокойной стали (см. рисунок 23, б,в) имеются сотовые или округлые пузыри (они могут отсутствовать), концентрированная усадочная раковина и под ней усадочная рыхлость, доходящая до 35— 45 % высоты слитка. Пузыри расположены у поверхности слитка, так как окисленность металла и интенсивность кипения недостаточны для формирования беспузыристой корки заметной толщины. В ниженй части слитка, где велико ферростатическое давление, пузыри из-за недостаточной окисленности металла не образуются.

Расположение усадочных пустот в слитке зависит от степени раскисленности стали. При нормальной раскисленности, когда интенсивность газовыдсления достаточна, над усадочной раковиной формируется «мост» пузыристого металла толщиной 200—270 мм, надежно изолирующий раковину от атмосферы, благодаря чему она заваривается при прокатке. Величина головной обрези при этом составляет 2,5—5 % от массы слитка. В случае перераскисления (длительность «искрения» металла в изложнице менее 10 с) слитки получаются с меньшей толщиной «моста» и недостаточно изолированной усадочной раковиной, что ведет к росту величины головной обрези.

Длина сотовых пузырей и высота зоны их расположения в слитке будут тем больше, чем лучше условия газовыделения, определяемые степенью раскисленностн стали и скоростью разливки.

В зависимости от степени раскисленности строение слитка полуспокойной стали приближается к структуре кипящего или спокойного слитка. При недостаточной раскисленности (длительность «искрения» более 40 с) в результате чрезмерного газовыделения возможно образование сотовых пузырей по всей высоте слитка (см. рисунок 23, а). Наличие сотовых пузырей нежелательно; они ведут к появлению рванин на поверхности проката, так как из-за отсутствия «здоровой корки» поверхность пузырей окисляется при нагреве под прокатку и пузыри при прокатке не завариваются.

Излишне полное раскисление (см. рисунок 23, г), наоборот, приводит к образованию развитой, несваривающейся усадочной раковины, а так как полуспокойная сталь разливается в уширяющиеся книзу изложницы без применения утепления головной части слитка, усадочная раковина будет распространяться на большую глубину, что потребует большой обрези

Скорость разливки полуспокойной стали изменяется в пределах от 0,3 до 5,0 м/мин. При малых скоростях условия газовыделения облегчаются, увеличивается высота зоны сотовых пузырей, а их длина достигает 30—40 мм, что существенно усиливает пораженность проката рванинами. При высоких скоростях разливки пузыри либо отсутствуют, либо образуются мелкие округлые подкорковые пузыри, причем при нагреве под прокатку слой металла, в котором они расположены, переходит в окалину и поверхность проката получается чистой. Поэтому полуспокойную сталь рекомендуется разливать сверху с повышенной скоростью.

При производстве полуспокойной стали трудно обеспечить оптимальную раскисленность металла, т. е. определить оптимальный расход раскислителей, который должен точно соответствовать содержанию в металле растворенного кислорода. Поэтому окисленнось полуспокойной стали в процессе разливки регулируют: после заполнения первой изложницы фиксируют длительность искрения металла и если она велика (>40 с), в последующие изложницы добавляют небольшие количества алюминия, который снижает окисленность металла.

7.4 Химическая неоднородность слитков

Жидкая сталь представляет собой однородный раствор углерода, кремния, марганца, фосфора, серы, кислорода и газов в жидком железе, но содержание этих примесей в различных точках стального слитка неодинаково. Химическая неоднородность, или ликвация, возникает при затвердевании слитка.

Причиной возникновения ликвации является то, что растворимость ряда примесей в твердом железе ниже, чем в жидком. Вследствие этого растущие при затвердевании оси кристаллов содержат меньшее количество примесей, чем исходная сталь (процесс «избирательной кристаллизации»), а остающийся жидкий металл обогащается примесями.

Склонность к ликвации различных элементов, содержащихся в стали, неодинакова. Степень ликвации обычно характеризуют следующим выражением:

где С  — максимальное, минимальное и среднее содержание элемента в той или иной части слитка.

Различают ликвацию двух видов: дендритную и зональную.

Дендритная ликвация — это неоднородность стали в пределах одного кристалла (дендрита): содержание примеси в осях дендритов ниже, чем в межосных объемах. Наибольшей склонностью к дендритной ликвации обладают сера, фосфор и углерод. В меньшей степени: кремний, марганец, вольфрам, хром, молибден и ряд других элементов. Величина дендритной ликвации, т. е. различие между содержанием отдельных элементов в осях и межосных пространствах дендритов достигает существенных значений, например для 3-т слитка, %: сера около 200, фосфор 150, углерод 60, кремния 20, марганца 15.

Отрицательное влияние дендритной ликвации проявляется в том, что она вызывает появление в готовой стали полосчатой структуры, которая вызывает анизотропию механических свойств металла в продольном и поперечном относительно оси прокатки направлениях.

Зональная ликвация — это неоднородность состава стали в различных частях слитка. Она достигает больших значений, чем дендритная ликвация и представляет существенно большую опасность. К образованию зональной ликвации склонны сера, фосфор, углерод и кислород. Зональной же ликвации марганца, кремния, хрома, никеля, вольфрама, ванадия и титана практически не наблюдается.

Зональная ликвация вызывает неоднородность свойств в различных частях стальных изделий и может вызывать отбраковку металла вследствие отклонения  состава металла от заданного.

В возникновении зональной неоднородности наряду с избиратель ной  кристаллизацией важную роль играют  процессы,   приводящие к перемещению ликвирующих элементов из одной части слитка в другую. Такими процессами являются: диффузия примесей из двухфазной области в объем оставшегося жидкого металла; конвективные потоки металла в изложнице, приводящие к выносу ликватов в верхнюю и среднюю части слитка; всплывание объемов загрязненного примесями металла вследствие того, что их плотность меньше плотности остального металла. По этим причинам верхняя и осевая части слитка, кристаллизующиеся  в  последнюю очередь, обычно обогащаются примесями.

Проявление зональной ликвации зависит кроме всего прочего от степени раскисленности металла.

Зональная ликвация в слитке спокойной стали. В наружной корковой зоне слитка ликвация отсутствует и состав металла здесь не отличается от состава жидкой стали, поскольку из-за быстрой кристаллизации  поверхностных слоев слитка ликвационные процессы здесь не успевают развиться.

В остальном объеме слитка ликвация серы, фосфора и углерода подчиняется следующей  закономерности: в верхней части слитка содержание элементов возрастает в направлении к оси; в средней по высоте части слитка ликвация незначительна; в нижней части наблюдается обратная ликвация — содержание серы, фосфора и углерода убывает в направлении к оси слитка. Отрицательную ликвацию в нижней части слитка объясняют всплыванием и перемещением примесей  в верхнюю часть слитка.

Наряду с отмеченной общей закономерностью распределения ликвирующих примесей в слитке спокойной стали наблюдаются специфические виды ликвации: V-образная ликвация под усадочной раковиной и скопление примесей в виде нитей или полос — Λ - образная ликвация или «зона усов» (см. рисунок 24).

Образование V-образной ликвации объясняют опусканием в усадочные пустоты осевой части слитка загрязненного примесями металла из прибыли. В процессе кристаллизации последние объемы металла, находящегося в двухфазном состоянии, опускаются вследствие усадки по осевой части слитка. При перемещении увлекается и загрязненная ликватами жидкость из примыкающей двухфазной области, которая заполняет возникающие при усадке разрывы, располагаясь в форме воронки. Повышенная вязкость металла в конце кристаллизации слитка и наличие мостов препятствуют всплыванию ликватов, и в этой зоне сохраняется повышенное содержание серы, фосфора и углерода.

Причина образования Λ-образной ликвации окончательно не выяснена. Одни металлурги считают «усы» следами выделявшихся при кристаллизации пузырьков водорода, которые увлекали за собой примеси; другие видят причину образования «усов» в опускании загрязненного примесями металла в усадочные полости низа слитка по узким каналам между осями дендритов.

Наибольшее количество ликвирующих элементов обнаруживается в подприбыльной осевой части слитка, где металл затвердевает в последнюю очередь, а также в районе «усов». В слитках легированной стали массой 2,5—4,5 т степень ликвации под усадочной раковиной составляет, %: серы 170—300, фосфора 150—260, углерода 150—200. Обычно эта часть слитка отрезается при прокатке.

Развитие зональной ликвации зависит от ряда факторов. Зональная ликвация развивается тем сильнее, чем больше масса и поперечное сечение слитка и чем больше длительность его затвердевания. В связи с этим высококачественные и легированные стали, используемые для изготовления деталей ответственного назначения разливают в слитки небольшой массы (<6,5 т).

Все мероприятия, направленные на борьбу с развитием усадочных дефектов, будут способствовать также и уменьшению V-образной ликвации. В свою очередь факторы, вызывающие повышение скорости охлаждения и кристаллизации слитка, будут уменьшать развитие Λ-образной ликвации.

 

Зональная ликвация в слитке кипящей стали. В механически закупоренном слитке наружный слой здоровой корки вследствие очень быстрого затвердевания по составу не отличается от жидкой стали. В остальном объеме до вторичных пузырей наблюдается отрицательная ликвация серы, фосфора и углерода. Это объясняется тем, что при активном кипении ликваты выносятся в верхнюю часть слитка.

Центральная часть слитка (внутри вторичных пузырей), затвердевающая после закупоривания, загрязнена ликватами. При этом содержание серы, фосфора и углерода возрастает в направлении от поверхности к оси и от низа к верху слитка. Максимальное скопление примесей — «ликвационный центр» — находится в середине верхней части слитка на расстоянии 10—20 % высоты от его верха.

Зональная ликвация в слитках кипящей стали в связи с интенсивной циркуляцией металла выражена значительно сильнее, чем в слитках спокойной стали. В центре скопления примесей крупных механически закупоренных слитков степень ликвации серы может достигать 800 %, фосфора 500 %, углерода 300 %. В связи с этим при производстве качественных кипящих сталей для удаления скопления вредных примесей головную обрезь приходится увеличивать до 10— 13 % от массы слитка (вместо 5—9 % для рядовой стали).

В связи с сильным развитием ликвации при механическом закупоривании его активно заменяют химическим. В этом случае зональная неоднородность выражена значительно слабее из-за раннего прекращения кипения, поскольку химическое закупоривание производят через 1—1,5 мин поле окончания наполнения изложницы, а механическое — через 7—15 мин.

В химически закупоренном слитке быстро затвердевающая корковая зона и зона слабо развитых сотовых пузырей не имеют заметной ликвации. В остальном объеме слитка отмечается слабо заметное повышение содержания примесей в направлении от низа к верху и от поверхности к оси слитка. На оси слитка па расстоянии 25—35 % высоты от верха сходится ликвационный центр — локальное скопление примесей.

В слитке полуспокойной стали характер ликвации примерно такой же, как в химически закупоренном слитке кипящей стали.

7.5 Температура и скорость разливки

Сталь, выпускаемая из печи, должна быть нагрета на 100—150 °С выше температуры плавления, которая зависит от состава стали и, обычно снижается при увеличении содержания углерода и легирующих элементов.

Перегрев необходим для обеспечения нужной температуры стали при разливке, а также для компенсации потерь тепла за время выпуска, выдержки стали в ковше до начала разливки и за время разливки, длительность которой для ковшей большой емкости может достигать 1—1,5 ч. Наиболее сильно сталь охлаждается при выпуске и в первые минуты выдержки в ковше, когда тепло расходуется на нагрев футеровки ковша; обычно за это время температура металла понижается па 30—60 °С.

Нормальной температурой начала разливки считают температуру, превышающую температуру плавления стали на 90—120 °С при сифонной разливке и на 70—110 °С при разливке сверху.

Чрезмерно высокая температура стали при разливке ведет к ухудшению качества слитка. Перегретая сталь дольше затвердевает в изложнице, поэтому в слитке сильнее развивается химическая неоднородность. Быстрая разливка горячего металла ведет к увеличению пораженности поверхности слитков продольными трещинами. С увеличением температуры возрастает также количество растворенных в стали вредных газов, что ухудшает свойства готового металла.

Разливка стали при слишком низкой температуре также нежелательна. Холодный металл более вязок, что затрудняет всплывание НМВ в кристаллизирующемся слитке и приводит к повышенному загрязнению стали неметаллическими включениями. При затвердевании вязкого металла ухудшается питание кристаллизующихся объемов слитка из прибыли, поэтому слитки получаются с повышенной осевой пористостью и рыхлостью. При сифонной разливке холодного металла на его поверхности в изложнице образуется корочка, завороты которой являются серьезным дефектом слитка.

Скорость разливки. Чрезмерно высокая скорость разливки ведет к увеличению количества продольных трещин на поверхности слитка, а при разливке кипящей стали вызывает уменьшение толщины здоровой наружной корочки в слитке. Разливка с недостаточной скоростью ведет к усиленному образованию и заворотам корочки, особенно при разливке стали сифоном.

По этим причинам скорость разливки увязывают с температурой металла. Горячий металл следует разливать более медленно, холодный быстрее. Оптимальные температуры и скорости разливки подбирают опытным путем с учетом способа разливки, массы слитка, состава и свойств стали.

Скорость разливки чаще всего характеризуют скоростью подъема стали в изложнице, которая находится в пределах 0,15—5 м/мин. Ее регулируют изменением диаметра разливочного стакана, а также частичным перекрытием вытекающей из стакана струи с помощью стопора или шиберного затвора.


7.6 Технология разливки стали в изложницы

7.6.1 Особенности разливки спокойной стали

Спокойную сталь разливают и сифоном и сверху, как правило, в изложницы, расширяющиеся кверху с прибыльными надставками.

Технология разливки

При разливке сверху струя металла должна быть направлена строго по центру изложницы. Во избежание разбрызгивания металла при ударе о дно изложницы разливку начинают медленно при неполностью открытом стопоре. После образования «подушки» жидкого металла разливку ведут полной струей. Скорость разливки при этом определяется диаметром разливочного стакана (40-55мм). Прибыльную часть слитка заполняют медленно, что способствует выводу усадочной раковины в прибыль.

Скорость разливки сверху до недавнего времени выбирали в пределах 0,3—1,1 м/мин. В последние годы для сталей не склонных образованию продольных трещин внедряют скоростную разливку (до 4,5 м/мин - стакан диаметром 80мм). Длительность наполнения тела слитков массой от 2 до 20 т составляет 0,5—8  мин.

При сифонной разливке низ изложницы также заполняют медленно. В дальнейшем скорость разливки регулируют в зависимости от вида поверхности металла в изложнице. Обычно на поверхности металла образуется окисленная корка, завороты  которой  у стенок изложницы — серьезный дефект слитка. Образование и рост корки интенсифицируются при малой скорости разливки, недостаточной температуре металла и в особенности при наличии в стали легкоокисляющихся элементов (алюминия, титана, хрома). Для предотвращения заворотов корки разливку стараются вести с «чистым зеркалом».

Величина скорости разливки стали сифоном обычно находится в пределах 0,15—0,7 м/мин. Прибыльную часть слитка, как и при разливке сверху, наполняют замедленно. Длительность наполнения тела слитков массой от 1 до 13 т изменяется в пределах от 1,5 до 9 мин.

После окончания разливки слитка спокойной стали поверхность металла в прибыльной надставке засыпают экзотермическим или теплоизолирующими смесями. Состав с изложницами с затвердевающими в них слитками выдерживают в разливочном пролете без движения от 30 мин до 2 ч (в зависимости от марки стали и массы слитка). Необходимость длительной выдержки до начала транспортировки вызывается тем, что при сотрясении кристаллизующегося слитка резко усиливается внеосевая (зональная) ликвация.

Защита металла в изложнице от окисления

Для предотвращения образования и заворота корки при сифонной разливке спокойной стали, а иногда и при разливке сверху применяют следующие способы защиты поверхности металла в изложнице от окисления и охлаждения.

Разливка под слоем жидкого шлака. На поверхности поднимающегося в изложнице металла создают слой жидкого шлака, который защищает сталь от окисления и охлаждения, что исключает образование окисленной корочки. Шлак также поглощает частицы окислов, всплывающие из металла. Помимо этого, в результате прилипания шлака к стенкам изложницы между ними и поднимающимся металлом остается тонкая (1—3 мм) шлаковая прослойка, что обеспечивает получение чистой поверхности слитка.

Разливка под теплоизолирующими смесями и материалами. При разливке углеродистых и низколегированных сталей, не содержащих легкоокисляющихся элементов применяют более дешевые материалы — малотеплопроводные неплавящиеся и частично плавящиеся. К первым относятся диски и плиты, получаемые прессованием из слюды, асбестита, графито-опилочной смеси и др. Диски во время заполнения изложницы плавают на поверхности поднимающегося металла.

Более широкое применение нашли частично плавящиеся смеси: зольно-графитовая, перлито-графитовая и вермикулито-графитовая, содержащие 12—30 % графита, а также чистый вермикулит (минерал типа гидрослюд). Зольно-графитовая смесь содержит золу тепловых электростанций, основу которой составляют SiO2 и А12О3.

Смеси или вермикулит загружают на дно несмазанных изложниц в бумажных мешках. При соприкосновении с жидким металлом смесь подплавляется и образует вязкий шлак, не налипающий на стенки изложницы; верхняя нерасплавившаяся часть смеси выполняет роль теплоизолятора. Графит в смесях предотвращает их спекание и налипание на стенки изложницы.

Расход зольно-графитовой смеси составляет 2—3,5, перлито- и вермикулито-графитовых 1,0—1,5, вермикулита 1,5—2,5 кг на 1 т стали.

Защита струи металла аргоном. На центровую устанавливают специальное кольцевое устройство, соединяемое с днищем сталеразливочного ковша и охватывающее во время разливки струю металла. В кольцевую полость подают аргон, предохраняющий металл от окисления. Готовая сталь при этом содержит пониженное количество кислорода и неметаллических включений. Из-за сложности способ применяется только при разливке сталей, содержащих легкоокисляющиеся элементы.

Разливка с использованием материалов, создающих в изложнице восстановительную атмосферу. Сюда относят ряд способов, из которых наибольшее применение находят разливка с деревянными рамками и разливка с петролатумом (побочный продукт переработки нефти), который загружают в количестве 0,2—1,0 кг/т в несмазанную изложницу до начала разливки, а изложницу плотно закрывают крышкой.

Методы снижения головной обрези

Наряду с применением футерованных прибыльных надставок в сочетании с засыпкой верха слитка теплоизолирующими смесями используют ряд других способов снижения величины головной обрези верха слитков спокойной стали.

1. Применение теплоизоляционных вкладышей. Вкладыши в виде пластин закрепляют у стенок прибыльной надставки или же в верхней части изложницы вдоль ее стенок, В последнем случае изложницы применяют без прибыльных надставок.

Благодаря низкой теплопроводности вкладышей охлаждение металла в прибыльной части изложницы происходит медленнее, чем при использовании обычных прибыльных надставок; это уменьшает глубину усадочной раковины в слитке и обрезь металла при прокатке на 2—5 %.

2. Применение экзотермических вкладышей. Вкладыши выполняют из экзотермических смесей в виде пластин. Их укрепляют у стенок верхней части изложницы или в прибыльной надставке; иногда прибыльную надставку обмазывают изнутри экзотермической массой. Экзотермические смеси, из которых на связке (жидкое стекло) готовят вкладыши, содержат горючее вещество (алюминий), окислитель (окалину) и нейтральные наполнители (шамот, глину, вермикулит). При контакте с горячим металлом алюминий окисляется за счет кислорода окислителя с выделением тепла. В результате обогрева уменьшается глубина проникновения в слиток усадочной раковины и снижается головная обрезь на 5—8 %.

3. Электродуговой обогрев. В прибыльную надставку вводят графитовый электрод, устанавливая его над поверхностью металла. Способ позволяет повысить выход годного на 5—8 % при расходе электроэнергии 15—40 кВт-ч на 1т стали.

4. Газовый обогрев. После наполнения слитка в прибыльную надставку засыпают шлаковую смесь и над поверхностью металла устанавливают газокислородную горелку. Обогрев в течение 15 — 20 мин за счет сжигания природного или коксового газа в кислороде позволяет повысить выход годного металла на 6—8 %.

5. Электрошлаковая подпитка. Поверхность металла в прибыли покрывают шлаком, состоящим из CaO, CaF2 и А12О3, который обладает электропроводностью, и в то же время большим электросопротивлением. В шлак сверху погружают электрод из стали того же состава, что и отливаемый слиток. При прохождении электрического тока от электрода к металлу через шлак, последний сильно нагревается, электрод плавится и капли металла через шлак поступают в головную часть слитка. Способ позволяет получать слитки без  усадочной  раковины  и  увеличить  выход годного металла  на 15 % и более.

7.6.2 Особенности разливки кипящей стали

Кипящую сталь разливают и сифоном, и сверху в уширяющиеся книзу сквозные изложницы. В обоих случаях для предотвращения заплесков металла на стенки изложницы и образования плен на нижней поверхности слитков нижнюю часть изложницы заполняют медленно. В дальнейшем скорость наполнения изложницы при разливке сверху определяется диаметром стакана сталеразливочного ковша, а при разливке сифоном — сечением каналов сифонного кирпича. При сифонной разливке перегретой стали и при чрезмерной ее окислениости могут происходить выплески металла из центровой. В этом случае в центровую для дополнительного раскисления вводят небольшие количества алюминия. При разливке кипящей стали важным фактором является скорость подъема металла в изложнице, определяющая толщину здоровой корки в слитке. Скорость разливки сверху без интенсификаторов кипения обычно составляет 0,5—1,0 м/мин и при скорости около 1,0 м/мин получают здоровую корочку минимально допустимой толщины (8—10 мм). Продолжительность отливки слитков массой 5—20 т при разливке сифоном составляет 5—12, при разливке сверху 2—4 мин.

После окончания наполнения изложницы металл в ней некоторое время кипит, а затем для уменьшения развития химической неоднородности кипение прекращают, применяя механическое или химическое закупоривание слитка. Состав с изложницами выдерживают у разливочной площадки до начала транспортировки не менее 20 мин.

Механическое закупоривание. Кипение в изложнице продолжается до тех пор, пока у ее стенок затвердеет слой металла, достаточный для укладки на него крышки. Толщина этого слоя составляет около 1/6 толщины слитка (60-100мм), а время кипения 7—15 мин. Затем на поверхность металла укладывают массивную металлическую крышку, вызывающую охлаждение и замораживание верха слитка, в результате чего прекращается кипение. Крышки снимают со слитка через 20—30 мин после закупоривания.

Химическое закупоривание. Как показал опыт, механическое закупоривание обеспечивает удовлетворительное качество слитков массой менее 6—8 т. В более крупных слитках из-за длительного кипения (7—15 мин) ликвация развивается столь сильно, что для удаления скоплений вредных примесей требуется существенное увеличение головной обрези при прокатке. Поэтому в последние годы, особенно в связи с увеличением массы отливаемых слитков, вместо механического закупоривания применяют химическое.

При химическом закупоривании для прекращения кипения и ускорения застывания верха слитка в изложницу вводят раскислители. Используют алюминий и иногда ферросилиций (в виде кусков размером 4—30мм), которые дают на поверхность металла через 1—1,5 мин после окончания наполнения изложницы. Закупоривание производят присадкой алюминия на зеркало металла непосредственно после окончания заливки изложницы. Алюминий дается в виде дроби или жидким.

При химическом закупоривании алюминием вследствие уменьшения ликвации головная обрезь крупных слитков кипящей стали составляет 4—8 % вместо 8—13 % при механическом закупоривании.

Способы повышения скорости разливки кипящей стали

Уровень окисленности кипящей стали, при ее выплавке существующими методами таков, что ее можно разливать со скоростью подъема металла в изложнице не более 1 м/мин, поскольку при большей скорости толщина здоровой корочки слитка получается недостаточной (<8—10 мм). Для решения проблемы «здоровой корочки» и повышения скорости разливки применяют следующие методы:

1. Применение интенсификаторов кипения — порошкообразные смеси, содержащие окислы железа и способные легко передавать кислород этих окислов жидкой стали. Вследствие увеличения окисленности стали повышается интенсивность ее кипения, что обеспечивает утолщение здоровой корочки.

Применение интенсификатора кипения позволяет получать здоровую корочку достаточной толщины (10-20 мм) при увеличении скорости разливки до 2,0—2,5 м/мин, при этом повышенной загрязненности стали неметаллическими включениями не отмечается.

2. Обдув струи стали кислородом. Действенным средством увеличения толщины беспузыристой корочки является обдув струи стали при разливке кислородом.

3. Скоростная разливка - разливка химически закупориваемой стали со скоростью наполнения изложниц до 4—5 м/мин. При разливке кипящей стали со столь большой скоростью подъема металла в изложнице пузыри начинают формироваться у самой поверхности слитка, а благодаря быстрому закупориванию они не успевают вырасти до значительных размеров. Получается слиток без здоровой корочки с мелкими подкорковыми пузырями. Тонкий наружный слой металла с пузырями окисляясь при нагреве слитка под прокатку переходит в окалину и поверхность проката получается без дефектов, несмотря на отсутствие здоровой корочки.

7.6.3 Технология разливки полуспокойной стали

Полуспокойную сталь разливают как сифоном, так и сверху в сквозные  расширяющиеся книзу или в бутылочные изложницы. Хорошие результаты дает применение скоростной разливки сверху с линейной скоростью подъема металла не менее 1,5 м/мин. В этом случае за счет быстрого роста ферростатического давления возможно подавить или по крайней мере ослабить процесс образования подкорковых пузырей. Если глубина их залегания не превышает 3—4 мм, они удаляются вместе со слоем окалины, образующимся при нагреве слитков, и не ухудшают поверхности проката.

Полуспокойную сталь разливают как в бутылочные, так и в сквозные уширяющиеся книзу изложницы. Последние получили большее распространение как более удобные в эксплуатации.

7.7 Дефекты стальных слитков

Дефекты стальных слитков разделяют на естественные или неизбежные, которые возникают при затвердевании и охлаждении слитка, и технологические, которые возникают из-за несовершенства технологии разливки, а также выплавки стали. К числу первых относятся усадочная раковина, осевая рыхлость, химическая и структурная неоднородность, сотовые пузыри, эндогенные неметаллические включения; к числу вторых — трещины, плены, завороты корки, подкорковые пузыри в слитках спокойной стали, «голенища» и рослость слитков кипящей стали, малая толщина в них здоровой корочки и некоторые другие. Часть дефектов рассмотрены при описании строения слитков, наиболее важные из остальных рассматриваются ниже.

Осевая рыхлость. В верхней осевой части слитков спокойной стали обнаруживаются скопления мелких усадочных пустот, называемые осевой рыхлостью или пористостью. При кристаллизации слитка осевая зона незатвердевшего металла все время сужается и в отдельных местах происходит срастание кристаллов, растущих с противоположных боков этой зоны. Под сросшимися кристаллами затвердевание идет без доступа жидкого металла сверху из прибыльной части слитка и поэтому в этих местах образуются мелкие усадочные пустоты.

Увеличению осевой рыхлости способствуют понижение температуры разливаемого металла, увеличение массы слитка, наличие в стали элементов, повышающих усадку при затвердевании (в особенности углерода), наличие элементов (хрома, титана), увеличивающих вязкость жидкой стали,

Улучшение обогрева верхней части слитка приводит к уменьшению осевой пористости.

Заворот корки. Это дефект поверхности слитков, образующийся преимущественно при сифонной разливке вследствие окисления и охлаждения поверхности жидкой стали в изложнице.

Обычно поверхность поднимающегося в изложнице металла покрывается пленкой окислов, образующихся в результате окисления составляющих стали кислородом воздуха. Затвердевающий под пленкой металл образует вместе с ней корку, которая поглощает также всплывающие из жидкой стали неметаллические и шлаковые включения. Если корка пристает к стенкам изложницы, то поднимающийся снизу металл прорывает ее, заворачивает к стенке изложницы и заливает. В месте заворота корки в слитке обнаруживаются скопления неметаллических включений и газовые пузыри, образующиеся в результате взаимодействия окислов корки с содержащимся в стали углеродом. В процессе прокатки в месте заворота корки возникают рванины, поэтому требуется зачистка поверхности проката или поверхности слитков перед прокаткой, что усложняет производство и вызывает дополнительные потери металла.

Интенсивность роста корки и пораженностъ слитка заворотами увеличиваются при низких температуре разливаемой стали и скорости разливки и, в особенности, при наличии в стали легкоокисляющихся элементов (хрома, алюминия, титана). Для снижения пораженности слитка заворотами прибегают к специальным мерам защиты поверхности металла в изложнице от окисления.

Поперечные горячие трещины. Образование наружных поперечных трещин — результат препятствия свободной усадке затвердевающего слитка. Наиболее часто трещины возникают вследствие местного  зависания  слитка  в  изложнице.

Для предупреждения образования этого порока необходимо обеспечивать плотное прилегание прибыльной надставки к изложнице и отбраковывать изложницы с дефектными стенками.

Продольные наружные горячие трещины. Они возникают при разливке перегретой стали и при повышенных скоростях разливки. Их ширина составляет 1—3 мм, длина достигает 1 м и более.

Трещины образуются следующим образом. В результате усадки корки затвердевающего слитка и теплового расширения изложницы между ними образуется зазор. Жидкий металл оказывается как бы в сосуде, стенками которого служит корка затвердевшего металла. Тонкая корка может не выдержать ферростатического давления жидкой стали; ее разрыв в продольном направлении представляет собой продольную трещину. Вероятность разрыва тем выше, чем выше температура стали и скорость разливки, так как в этих случаях из-за избытка тепла медленнее нарастает толщина корки затвердевшего металла. Обычно продольные трещины образуются по углам слитка.

Мерами борьбы с образованием продольных горячих трещин обычно служат: предотвращение перегрева стали, уменьшение скорости разливки, применение изложниц с вогнутыми и волнистыми стенками.

Продольные холодные наружные трещины. Они образуются в процессе охлаждения затвердевшего слитка на его гранях при температуре ниже 600 °С. Они возникают при слишком быстром охлаждении слитков в результате термических и фазовых напряжений. Для предотвращения их образования следует медленнее проводить охлаждение слитков. Наиболее действенное средство против образования термических трещин — посадка слитков в нагревательные колодцы в горячем состоянии.

Плены. Они обычно образуются при разливке сверху и преимущественно в нижней части слитка. В результате удара струи металла о дно изложницы сталь разбрызгивается. Брызги и заплески застывают на стенках изложницы, причем поверхность их окисляется  и поэтому они не растворяются в поднимающейся  жидкой стали и не свариваются с основной массой слитка, образуя дефект поверхности слитка — плены. Плены не свариваются с металлом и при прокатке, вследствие   чего   поверхность   прокатанных   заготовок   приходится подвергать зачистке.

Для уменьшения разбрызгивания заполнение изложниц начинают медленно при не полностью открытом стопоре или затворе. С целью уменьшения пленообразования применяют также разливку через промежуточные ковши и воронки.

Подкорковые пузыри. В слитках спокойной стали иногда обнаруживаются газовые пузыри, расположенные у поверхности слитка. Причин возникновения этих подкорковых пузырей несколько. Одна из них — излишне толстый слой смазки изложницы. В этом случае смазка не успевает выгореть до подхода жидкого металла и залитая металлом возгоняется. Возгоны задерживаются между кристаллами затвердевающего металла, образуя пузыри. Пузыри образуются и при слишком высоком (>0,5 %) содержании влаги в смазке в результате ее испарения, а также при разливке недостаточно раскисленной стали вследствие образования при ее кристаллизации пузырьков СО. Образуются подкорковые пузыри и в результате разбрызгивания стали при разливке сверху. Приставшие к стенкам капли металла (брызги) окисляются с поверхности. Попав затем в жидкую сталь окислы капель реагируют с углеродом стали, образуя пузырьки СО.

При прокатке слитков в местах расположения пузырей возникают волосовины — мелкие тонкие   трещины.

Рослость слитка спокойной стали и внутренние газовые пузыри. Причиной этого дефекта слитков спокойной стали является повышенное содержание в стали водорода. Во время кристаллизации избыточный водород выделяется из раствора и остается между кристаллами в виде пузырей, вызывая увеличение высоты («рост») слитка. Этот дефект характерен для сталей с повышенным содержанием кремния.

Голенище. При чрезмерной окисленности кипящей стали кипение в процессе заполнения изложницы идет очень бурно, пузырьки СО сильно вспенивают металл. После окончания интенсивного кипения (при химическом закупоривании после ввода алюминия) сталь оседает, оставляя на стенках изложницы застывшую корку (голенище).

Рослость слитков кипящей стали. При недостаточной окисленности металла и вялом кипении в слитке остается много пузырей, в результате чего возрастает высота слитка, уменьшается плотность головной части и увеличивается головная обрезь при прокатке.

8 Непрерывная разливка стали

8.1 Сущность непрерывной разливки

Способ непрерывной разливки заключается в том, что жидкую сталь заливают в интенсивно охлаждаемую сквозную форму — кристаллизатор. Частично затвердевший слиток непрерывно протягивают через него и дополнительно охлаждают в так называемой зоне вторичного охлаждения. В результате в процессе непрерывной заливки металла и его затвердевания образуется непрерывный слиток.

Агрегаты для разливки стали этим методом называют машинами непрерывного литья заготовок (МНЛЗ) или установками непрерывной разливки стали (УНРС).

При использовании МНЛЗ (см. рисунок 25) сталь из сталеразливочного ковша поступает в промежуточный ковш, а из него в кристаллизатор. В кристаллизаторе образуется оболочка, заполненная жидкой сталью по форме и сечению, отвечающему готовой заготовке. Частично затвердевшая заготовка с помощью транспортирующей системы – тянущей клети поступает в зону вторичного охлаждения, где происходит полное затвердевание заготовок. Затвердевший слиток режется на мерные длины и готовые заготовки и с помощью рольганга или других транспортных средств направляются в прокатный цех или на склад.

Разливку ведут до израсходования металла в сталеразливочном ковше или же разливают без перерыва металл из нескольких ковшей (разливка методом «плавка на плавку»).

Основные преимущества непрерывной разливки по сравнению с разливкой в изложницы:

1) существенно повышается выход годного металла. Так, для спокойной стали получение слябов или блюмов путем непрерывной разливки вместо разливки в изложницы с последующей прокаткой обеспечивает повышение выхода годного на 10—15 % от массы разливаемой стали. Объясняется это тем, что верхняя часть каждого слитка (13—20 %) идет при прокатке в обрезь из-за наличия усадочной раковины и зоны обогащенной ливкатами, а при непрерывной разливке образуется одна усадочная раковина в конце разливки плавки;

2) непрерывно литые слитки или заготовки прокатывают непосредственно на листовых или сортовых станах. Применение непрерывной разливки стали позволяет исключить из производственного цикла операции по подготовке разливочного состава, стрипперованию слитков, прокатке на обжимных станах. Все это приводит к снижению капитальных затрат, устранению ряда трудоемких операций, сокращению длительности производственного цикла от выпуска стали до получения готового проката. То есть упрощается производство по заводу в целом и улучшаются его технико-экономические показатели, уменьшаются энергетические затраты, потребность в рабочей силе и площадь завода;

3) вследствие малых поперечных размеров слитка и высокой скорости кристаллизации стали ограничивается развитие ликвации, то есть повышается качество металла;

4) создаются широкие возможности для полной механизации и автоматизации разливки, повышения производительности и улучшения условий труда.

На МНЛЗ, в зависимости от назначения, отливают заготовки квадратного сечения размером до 350X350 мм, круглые диаметром до 600 мм, слябы толщиной до 350 мм и шириной до 2600 мм и более сложный сортамент (полые круглые заготовки для производства труб, заготовки двутаврового сечения и др).

Затвердевание непрерывного слитка

Примерный тепловой баланс непрерывного слитка: кристаллизатор – 16-20%; ЗВО – 23-28%; охлаждение на воздухе – 51-61%. В непрерывноотливаемом слитке можно выделить два участка активного охлаждения — кристаллизатор и зону вторичного охлаждения (ЗВО).

Заливаемый в кристаллизатор металл при контакте с его медными водоохлаждаемыми стенками переохлаждается и затвердевает, образуя корку слитка требуемой конфигурации. На расстоянии 200—600 мм от верха  кристаллизатора находится зона непосредственного контакта с коркой слитка, где теплоотвод максимальный (1,4—2,3 МВт/м2); ниже вследствие усадки корки между ней и стенками кристаллизатора возникает газовый зазор, резко снижающий теплоотвод (до 0,3—0,6 МВт/м2). В этой зоне вследствие возможной деформации непрочной корки и стенок кристаллизатора могут появляться участки плотного и неплотного контакта, в которых из-за различия в теплоотводе температура и толщина затвердевающей корки будут различаться. Эта неоднородность способствует возникновению дефектов — в местах уменьшенной толщины корки вследствие термических напряжений могут возникать продольные наружные трещины, а в переохлажденных участках плотного контакта — паукообразные или сетчатые поверхностные трещины. Толщина корки на выходе из кристаллизатора должна быть достаточной, чтобы выдержать усилие вытягивания и давление жидкой стали. Эта толщина тем больше, чем больше время пребывания корки кристаллизаторе и обычно составляет 10—25 мм, а температура поверхности слитка на выходе из кристаллизатора 900—1250 °С.

В зоне вторичного охлаждения на поверхность движущегося слитка подают распыленную воду и устанавливают опорные устройства (например, ролики), которые предотвращают возможное  выпучивание  корки  слитка  под воздействием  давления столба жидкой стали.  Выбор способа охлаждения в этой зоне базировался на опыте, который показал, что при слишком интенсивной подаче охладителя (например, подаче воды струями) из-за переохлаждения поверхности слитка и возникающих при этом термических напряжений в слитке образуются внутренние и сетчатые поверхностные трещины. Поэтому применяют распыленную воду («мягкое охлаждение»). Расход воды уменьшается по мере отдаления от кристаллизатора; его рассчитывают так, чтобы отводилось тепло, выделяющееся при кристаллизации стали, а температура корки во избежание образования трещин снижалась бы от исходной (900—1250 °С в начале зоны) не более, чем до 800—1000 °С в конце, причем в тем меньшей степени, чем выше склонность стали к трещинообразованию.

Длина зоны вторичного охлаждения составляет 80 — 100 % глубины лунки жидкого металла в слитке.

Структурная и химическая неоднородность непрерывнолитой заготовки

Непрерывным способом разливают преимущественно спокойную сталь, поскольку при разливке кипящей стали не достигается существенного увеличения выхода годного и трудно получить достаточную толщину беспузыристой корки в слитке из-за большой скорости разливки и сложности обеспечения необходимой степени окисленности металла.

Образование структурных зон в непрерывном слитке, как и в слитке, отлитом в изложницу, определяется в основном составом и температурой стали, а также теплофизическими условиями затвердевания. В непрерывном слитке спокойной стали также наблюдаются структурные зоны наружных мелкозернистых, столбчатых и различно ориентированных срединных кристаллов.

Химическая неоднородность в непрерывном слитке развивается в меньшей степени, чем в слитке, отлитом в изложницу. Это справедливо как для дендритной, так и для зональной ликвации. При повышенной скорости кристаллизации разделительная диффузия примеси проходит менее полно и соответственно меньшей сказывается и разница концентрации примеси в осях дендритов и межосных участках.

Так же как и дендритная, зональная ликвация уменьшается с ростом скорости затвердевания. Установлено, что при скорости продвижения фронта затвердевания более  1,8 мм/мин зональная ликвация практически отсутствует. В непрерывном слитке даже большого сечения скорость  кристаллизации  превышает эту  критическую  величину, связи с этим в непрерывных слитках отсутствует значительная зональная ликвация.

Например, в осевой зоне непрерывных слитков сечением от 75x500 до 180х900 мм степень положительной ликвации примесей достигала  значений,   %:  для углерода 10—14, для серы 5—42 и для фосфора 10,5—47.

8.2 Классификация МНЛЗ

В настоящее время в эксплуатации находится большое разнообразие установок непрерывной разливки стали. Все эти разновидности установок классифицируются по следующим признаками.

По типу заготовки МНЛЗ различаются на слябовые, блюмовые и сортовые. Заготовки, отливаемые на слябовых машинах, имеют форму поперечного сечения в виде прямоугольника с соотношением длинной стороны к короткой > 3 …4. На блюмовых и сортовых МНЛЗ отливают заготовки в виде круга, квадрата или прямоугольника с меньшим отношением сторон. Заготовки с размером стороны  > 200мм обычно называются блюмами, с меньшим размером – сортовыми заготовками.

По принципу работы различают установки непрерывной разливки и полунепрерывного литья. На машинах непрерывной разливки слиток режется на заготовки мерной длины, что позволяет разливать плавки сериями методом плавки на плавку. При полунепреывной литье длина заготовки обусловлена конструктивными особенностями – ходом механизма вытягивания, который выбирается из соображения упрощения и удешевления машины в данных условиях производства.

По составу различают одно- и многоручьевые МНЛЗ. Увеличение производительности установки достигается разливкой металла из сталеразливочного ковша в несколько кристаллизаторов. Обычно сортовые машины образуются четырьмя – восемью ручьями, а слябовые – двумя. В последнее время изготавливаются слябовые машины с четырьмя ручьями.

По характеру движения кристаллизатора различаются следующие типы МНЛЗ:

- с неподвижным кристаллизатором; к ним относится горизонтальная МНЛЗ (см. рисунок 26);

- с возвратно-поступательным движением; кристаллизатор, определенный период движется одновременно со слитками или, опережая его, а затем возвращается в начальное положение; к этому типу машин относится основное количество установок непрерывной разливки стали;

- с кристаллизатором, двигающимся со скоростью слитка; это обеспечивает отсутствие скольжения оболочки слитка относительно кристаллизатора и, следовательно, трения между ними, что снижает вероятность разрыва оболочки при высоких скоростях разливки; к этому типу МНЛЗ относится так называемая роторная (валковая) МНЛЗ.

По расположению технологической оси установки непрерывной разливки стали делятся на машины с постоянной кривизной оси до окончания затвердевания слитка (см. рисунок 26, а-д) и машины с технологической осью на участке затвердевания слитка переменной кривизны (см. рисунок 26, е, ж).

Наибольшее распространение получили следующие виды МНЛЗ: вертикальные, криволинейные и радиальные, с изгибом слитка и горизонтальные.

Вертикальные МНЛЗ

Технологическая ось вертикальной МНЛЗ расположена вертикально. Разливка, кристаллизация и охлаждение НЛЗ проводится по стандартной технологии.

 Основной недостаток вертикальных МНЛЗ - ограничение скорости разливки или сечения слитка а значит, и производительности установки. Поскольку затвердение должно закончиться до входа слитка в тянущую клеть и зону резки, то увеличение глубины лунки жидкого металла при повышении скорости (или сечения) ведет к необходимости повышать металлургическую длину МНЛЗ — большая высота.

Современные машины вертикального типа достигают высоты 40—43 м. Их сооружение требует или большого заглубления — до 25—27 м ниже уровня пола цеха, или строительства высоких зданий. И в том и в другом случае с увеличением высоты установки резко возрастают капитальные затраты, усложняются их эксплуатация и технологический процесс разливки.

Опыт эксплуатации вертикальных МНЛЗ показывает, что их целесообразно применять при металлургической длине установки, не превышающей 12 … 14 м. Это, в свою очередь, означает, что на машинах вертикального типа нельзя разливать плавки с большегрузных агрегатов, например конвертеров садкой 300—400 т. Размеры слитков, отливаемых на вертикальных МНЛЗ, колеблются от 50x50 до 300x1850 мм2. Выход годных слитков достигает 95—98 % от жидкого металла.

Стремление снизить высоту привело к созданию машин с расположением технологических узлов по криволинейной оси.

Криволинейные и радиальные МНЛЗ

В машинах этого типа в радиальном кристаллизаторе формируется изогнутый по определенному радиусу слиток. Важнейшим конструктивным параметром радиальной установки является радиус технологической оси. Его величина определяется так, чтобы обеспечить длину пути, достаточную для полного затвердевания слитка к моменту разгибания при заданной линейной скорости вытягивания, и не превысить допустимую степень деформации при разгибании, что могло бы привести к образованию трещин и разрывов на слитке.

Чтобы при последующем разгибании в слитке не образовывались трещины, радиус изгиба должен быть более чем в 25-раз больше толщины слитка. Обычно радиус изгиба выбирают в соответствии с соотношением R = (30-40) а, где а — толщина слитка, м.

В радиальных МНЛЗ на выходе из кристаллизатора слиток движется по дуге с постоянным радиусом. После прохождения нижней точки дуги полностью затвердевший слиток разгибают, переводя его в горизонтальное положение.

В криволинейных машинах слиток вначале движется по дуге, определяемой радиусом кривизны кристаллизатора, а затем еще в зоне вторичного охлаждения радиус кривизны дуги увеличивается, т. е. происходит постепенное разгибание слитка с жидкой сердцевиной с последующим переводом в горизонтальное положение. Рассредоточение деформации имеет целью снизить возникающие при этом в корке слитка напряжения и вероятность возникновения трещин.

Основные преимущества этих машин по сравнению с вертикальными: меньшая высота, что снижает стоимость сооружения МНЛЗ и здания цеха; возможность повышения скорости разливки, поскольку газорезку можно установить далеко от кристаллизатора и благодаря этому допустимо существенное увеличение глубины лунки жидкого металла в слитке; возможность резки слитка на куски большой длины.

По этим причинам в последние голы почти отказались от сооружения вертикальных   МНЛЗ   и   строят   преимущественно криволинейные и радиальные.

МНЛЗ с изгибом слитка

Существуют машины этого типа двух разновидностей. Машины первой разновидности (см. рисунок 27, а) имеют вертикальный кристаллизатор и систему вторичного охлаждения с расположенной за ней тянущей  клетью,  которые  не отличаются  от  аналогичных  устройств машин  вертикального типа.  Далее  движущийся   слиток  изгибают, переводя в горизонтальное положение. Затем слиток  поступает в выпрямляющие валки, за которыми располагают газорезку. Подобные машины применяют  при  отливке  слитков  небольшой  толщины  (<150  мм), поскольку при большей толщине из-за необходимости иметь большой радиус изгиба не достигается заметного снижения высоты по сравнению с вертикальной МНЛЗ.

Машины второй разновидности, называемые иногда вертикально-радиальными, имеют (см. рисунок 27, б) вертикально расположенный кристаллизатор и небольшой по высоте (3 — 4 м) вертикальный участок с опорными роликами, за которыми расположена секция изгибающих роликов, изгибающих полузатвердевший слиток, и далее радиальная роликовая проводка. После прохождения нижней точки дуги слиток попадает в тянуще-правильные валки, которые переводят его в горизонтальное положение и режут на мерные длины.

Установки этого типа применяются реже, чем криволинейные из-за большей высоты. Основное их достоинство — более простые в изготовлении и обслуживании прямолинейный кристаллизатор и верх зоны вторичного охлаждения.

В целом МНЛЗ с криволинейной технологической осью обладает рядом существенных преимуществ по сравнению с вертикальными: большая скорость разливки и возможность принимать большегрузные плавки; меньшая в 3—4 раза высота установки; возможность получения неограниченного по длине слитка; капитальные затраты на 30—50 % ниже при равной производительности; облегчается обслуживание МНЛЗ, так как основное технологическое оборудование располагается над уровнем пола цеха; при горизонтальной выдаче заготовок возможно осуществление прокатки непосредственно после отливки заготовок.

Недостатки: сложность конструкции криволинейной зоны вторичного охлаждения; необходимость иметь выпрямляющий механизм, а в случае установки с изгибом заготовки и тянуще-изгибающий механизм; трудности в обеспечении равномерного охлаждения слитка по грани большого и малого радиусов в зоне вторичного охлаждения, в результате чего возможно неоднородное строение слитка.

Поэтому при выборе типа машины в условиях высокопроизводительных цехов предпочтение следует отдать радиальным и криволинейным МНЛЗ, а при отливке качественной стали особенно сложного профиля ряд преимуществ сохраняется за вертикальными МНЛЗ.

Установки рассмотренных выше типов трудно, а часто и невозможно разместить в существующих зданиях сталеплавильных цехов. Для отливки непрерывных сортовых заготовок малого сечения и широкого сортамента в цехах с агрегатами малой и средней емкости разработаны и внедряются горизонтальные МНЛЗ.

Горизонтальная МНЛЗ

Технологическая ось машин этого типа расположена горизонтально или наклонена на угол до 15-20° к горизонтали. Схема горизонтальной МНЛЗ приведена на рисунке 28.

Машина имеет следующие основные технологические узлы: металлоприемник 1 — емкость, футерованную огнеупорным кирпичом; металлопровод 2 — узел, подающий металл в кристаллизатор, состоящий из металлического корпуса и огнеупорного стакана из нитрида бора, карбида кремния и т. п.; кристаллизатор 3 — медный или комбинированный (медь—графит) холодильник, охлаждаемый водой; зону вторичного охлаждения 4 в виде рольгангов; тянущее устройство 5, обеспечивающее периодическое вытягивание слитка; устройство для резки слитка 6.

Сталь из разливочного ковша поступает (см. рисунок 28) в футерованный металлоприемник, жестко соединенный с кристаллизатором посредством огнеупорного стакана.

Зона вторичного охлаждения представляет собой рольганг с системой водяных форсунок. Далее расположен механизм периодического вытягивания слитка. Механизм перемещает слиток вперед на 20—50 мм, затем возвращается назад, после чего цикл повторяется; во время обратного движения механизма слиток остается неподвижным, либо несколько осаживается назад. Число циклов изменяется от 20 до 100 в минуту.

Периодическое вытягивание слитка заменяет качание кристаллизатора, используемое на вертикальных и криволинейных машинах для предотвращения зависания и разрывов корки слитка в кристаллизаторе. За механизмом вытягивания расположена газорезка и рольганг с приводными роликами. Горизонтальные МНЛЗ применяют для отливки сортовых слитков небольшого сечения толщиной менее 150—200 мм; скорость разливки достигает 4 м/мин. Основные преимущества горизонтальных машин — малая высота, меньшее количество и масса оборудования и, следовательно, меньшая стоимость их строительства.

8.3 Основные узлы МНЛЗ

Современная МНЛЗ состоит из следующих элементов и узлов: сталеразливочного стенда; промежуточного ковша; тележки или стенда для промежуточного ковша; кристаллизатора; механизма возвратно-поступального движения кристаллизатора; опорных элементов и устройств зоны вторичного охлаждения; устройства для транспортировки слитка; затравки; механизма для ввода и уборки затравки; устройств для резки непрерывнолитого слитка на заготовки мерной длины; устройства для уборки и транспортировки заготовок к прокатному цеху и в отделение отделки заготовок; устройства для подачи твердой или жидкой смазки; оборудования для подачи воды в кристаллизатор; зону вторичного охлаждения и на охлаждение элементов МНЛЗ; электрооборудования; средств контроля и автоматизации.

Промежуточный ковш, снабженный одним (или несколькими) стаканом со стопором, обеспечивает постоянный по ходу разливки и небольшой напор струи металла, поступающего в кристаллизатор (за счет поддержания в ковше постоянного уровня металла высотой 0,6—1,2 м), регулирование стопором скорости подачи металла в кристаллизатор, подачу металла в несколько кристаллизаторов на многоручьевых МНЛЗ, разливку по методу «плавка на плавку».

Промежуточный ковш выполнятся сварным (см. рисунок 29) из стальных листов, футерованным огнеупорными материалами. Для уменьшения тепловых потерь он снабжен крышкой, футерованной кирпичом или набивной огнеупорной массой.

Для защиты металла от вторичного окисления используются погружные стаканы и защитные трубки (см. рисунок 29). Погружные стаканы предназначены для защиты металла на участке промежуточный ковш – кристаллизатор. Защитные трубы используются для защиты металла от контакта с воздухом на участке сталеразливочный ковш – промежуточный ковш и изготавливаются из шамотографита или плавленого кварца.

Кристаллизатор – медная полая водоохлаждаемая форма, в которой формируется профиль НЛЗ. Должен обеспечить быстрое формирование достаточно толстой и прочной корки слитка без дефектов. Для обеспечения интенсивного теплоотвода стенки кристаллизаторов делают водоохлаждаемыми, а внутреннюю их часть, соприкасающуюся с жидким металлом, выполняют из высокотеплопроводной меди.

Внутренняя стенка кристаллизатора работает в тяжелых условиях (контакт с высокотемпературным расплавом, истирающее действие слитка, воздействие ферростатического давления и т. д.). С целью повышения температуры разупрочнения медь иногда легируют хромом или серебром, а для повышения износостойкости на рабочую поверхность наносят тонкий слой стойких к истиранию материалов. Во избежание выпадения в каналах нерастворимого осадка вода не должна нагреваться выше 40 °С, а чтобы обеспечить интенсивный теплоотвод, скорость потока воды должна быть равной 5—10 м/с. Расход воды составляет около 90 м3/ч на 1 м периметра полости кристаллизатора.

На МНЛЗ применяют кристаллизаторы трех типов: сборные, блочные и гильзовые. Все они в зависимости от формы технологической оси  МНЛЗ могут быть прямолинейными и радиальными. Наиболее широкое распространение получили сборные кристаллизаторы, состоящие из четырех медных рабочих стенок, каждая из которых крепится шпильками к жесткой стальной плите (см. рисунок 30). Рабочие стенки выполняют из толстых (50—70 мм) медных пластин (при малой толщине 10—20 мм происходит их коробление, приводящее к образованию продольных трещин в корке слитка). Стойкость кристаллизаторов (без износостойких покрытий) составляет 100—150 большегрузных плавок.

Характерной особенностью сборного кристаллизатора является возможность изменения ширины отливаемой заготовки. Это достигается перемещением узких стен, вставленных между широкими, с помощью различных механических или электромеханических приводов.

Блочные кристаллизаторы изготавливают из сплошной медной заготовки, гильзовые — из медных цельнотянутых труб. Те и другие используют при отливке слитков небольшого сечения и прямолинейной формы.

Качество слитка в значительной степени определяется прочностью первичной корочки. При слабой корочке возможен ее разрыв в результате трения о стенки кристаллизатора при вытягивании слитка или выпучивание в зоне вторичного охлаждения. Обычно ее толщина на выходе из кристаллизатора составляет 15—25 мм. Увеличение толщины корочки может быть достигнуто уменьшением скорости вытягивания или увеличением высоты кристаллизатора. Однако в первом случае снижается производительность установки, а во втором увеличивается трение между слитком и стенками кристаллизатора, а также возрастает опасность коробления кристаллизатора. В зависимости от сечения заготовки длина кристаллизатора составляет 700—1100 мм. Чтобы слиток более длительное время соприкасался со стенками кристаллизатора, внутренний профиль кристаллизатора иногда выполняют с обратной конусностью (т. е. нижнее сечение несколько меньше верхнего).

Для уменьшения трения (и вторичного окисления в кристаллизаторе) между слитком и стенками кристаллизатора между ними подается смазка в виде разнообразных масел или парафина, либо подаются шлаковые смеси.

Опыт эксплуатации МНЛЗ показали, что в результате прилипания корочки слитка к стенке кристаллизатора, а также вследствие коробления возможно зависание слитка в кристаллизаторе. При этом образуются разрывы корочки, что не только ухудшает поверхность слитка, но и может быть причиной аварии при разливке. Чтобы предотвратить зависание слитка, облегчить попадание смазки между слитком и стенкой кристаллизатора, а главное, обеспечить сваривание (залечивание) разрывов корочки, кристаллизатору сообщается возвратно-поступательное движение с помощью механизма качания кристаллизатора.

Механизм качания кристаллизатора сообщает ему возвратно-поступательное движение с целью предотвращения разрывов и зависания корки слитка на стенках кристаллизатора. Вращаемые электродвигателями эксцентрики или кулачки через систему рычагов обеспечивают качание рамы, на которую устанавливают кристаллизатор.

Скорость перемещения кристаллизатора вверх и вниз изменяется в следующей последовательности: вниз он опускается со скоростью движения слитка, а вверх — с втрое большей скоростью. Амплитуда качания изменяется в пределах от 1 до 40 мм, частота — от 10 до 600 циклов в минуту.

Затравка предназначена для вытягивания первых метров отливаемого слитка. На вертикальных и горизонтальных машинах затравка представляет собой металлическую штангу, а на машинах с криволинейной осью она выполнена из шарнирно соединенных звеньев. Затравка снабжена головкой, в которой имеется углубление в виде «ласточкиного хвоста» или Г-образной формы (см. рисунок 31); сечение головки затравки соответствует сечению отливаемого слитка. Перед началом разливки затравку вводят в кристаллизатор и ее головка образует временное дно, а низ затравки находится в тянущих валках. Заливаемый в кристаллизатор металл застывает в углублении головки, обеспечивая сцепление затравки со слитком. При включении тянущих валков затравка начинает двигаться вниз и тянет за собой слиток. После выхода затравки из тянущих валков ее отделяют от слитка.

 

Вторичное охлаждение. Основной технологической функцией зоны вторичного охлаждения (ЗВО) является создание оптимальных условий для полного затвердевания отливаемого слитка, обеспечивающих требуемого качества металла.  Протяженность жидкой фазы в слитке на современных машинах непрерывной разливки в зависимости от сечения заготовки и скорости литья составляет 15 … 40 м.  На всем этом участке одновременно с затвердеванием металла происходит воздействие на него многочисленных силовых факторов: термическое напряжения, зависящие от условий охлаждения; растягивающие напряжения, определяемые трением и усилиями вытягивания; напряжения, возникающие под действием ферростатического давления жидкого расплава, которые вызывают выпучивание корки слитка.

Зону вторичное охлаждение наиболее часто выполняют в виде системы форсунок, подающих на поверхность слитка распыленную воду, и поддерживающих роликов.

Форсунки располагают между опорными роликами (см. рисунок 32) или брусьями в один, два или три ряда вдоль направления движения слитка в зависимости от его ширины. При отливке плоских слитков охлаждают широкие грани; у узких граней форсунки устанавливают лишь под кристаллизатором.

Интенсивность охлаждения должна уменьшаться по мере удаления слитка от кристаллизатора. С тем, чтобы обеспечить постепенное снижение расхода воды, зону вторичного охлаждения делят по длине на несколько (до восьми) секций, объединяющих группу форсунок и имеющих самостоятельный подвод воды.

Интенсивность вторичного охлаждения зависит от свойств разливаемой стали (склонности к образованию трещин) и от скорости разливки, при росте которой интенсивность подачи воды увеличивают. Общий расход воды на вторичное охлаждение при разливке спокойной стали составляет 0,4—1,0 м3/т при скорости вытягивания крупных слитков 1,0—1,4 м/мин. Протяженность зоны непосредственного охлаждения водой на слиток может составлять до 10—12 м.

Охлаждение слитка в зоне вторичного охлаждения МНЛЗ. Режим охлаждения слитка в ЗВО должен обеспечить минимальную продолжительность полного затвердевания непрерывного слитка и отсутствие поверхностных и внутренних дефектов. Экспериментальные и теоретические исследования по влиянию режимов охлаждения на качество непрерывного слитка позволили определить следующие требования к системе вторичного охлаждения и охлаждению непрерывнолитого слитка:

- монотонное снижение температуры поверхности заготовки до полного затвердевания слитка;

- на всем протяжении ЗВО температура поверхности слитка должны находиться в области температур пластической деформации данной стали;

- равномерное распределение температуры по поверхности слитка;

- возможность регулирования интенсивности охлаждения и протяженности зоны вторичного водяного охлаждения в зависимости, от марок разливаемой стали, скорости разливки и глубины жидкой фазы;

- надежность работы системы в течение длительного времени.

Поддерживающие устройства. В зоне вторичного охлаждения на корочку слитка действует ферростатическое давление столба жидкого металла, в результате чего возможно раздутие (выпучивание) по граням слитка. Для предотвращения этого в зоне вторичного охлаждения устанавливают рамы с поддерживающими роликами (рисунок 32).

В машинах для отливки слитков квадратного или близкого к квадрату прямоугольного сечения опорные устройства расположены со всех четырех сторон слитка; при отливке плоских слитков — вдоль двух широких граней слитка. Для удобства замены при ремонтах группы соседних верхних и нижних роликов объединены в отдельные секции, где в общем каркасе смонтировано от 2 до 7 пар роликов. В связи с тем, что по мере увеличения толщины затвердевающей корки жесткость слитка возрастает, диаметр роликов по мере отдаления от кристаллизатора увеличивается. Так при отливке слитков толщиной 300 мм диаметр роликов от 150—200 мм у кристаллизатора возрастает до 480—600 мм на горизонтальном участке.

Устройство для резки слитка на куски определенной длины (заготовки) устанавливаются в конце технологической линии МНЛЗ на ее горизонтальном (вертикальном) участке. Обычно применяются газокислородные резаки или гидравлические ножницы. Вне зависимости от способа резания, устройство снабжено механизмом передвижения, позволяющим осуществлять резку в процессе движения слитка.

Оборудование для быстрой смены ковшей. Современные МНЛЗ оборудуют поворотными и иногда передвижными стендами, которые обеспечивают подачу  ковшей с металлом к машине, взвешивание и установку ковша со скоростями, позволяющими вести разливку методом «плавка на плавку». По конструкции и принципу работы сталеразливочные стенды делятся на два типа – мостовые и поворотные. Все они рассчитаны на установку двух ковшей. Наиболее современный подъемно-поворотный стенд (см. рисунок 33) имеет располагаемую на основании 1 поворотную платформу 2, на которую через ось 6 опирается консоль 7. В подвесках 4 консоли можно установить два ковша (5а и б); вертикальное перемещение ковша достигают качанием консоли, при этом тяга 3 обеспечивает плоскопараллельное движение подвесок и ковшей.

8.4 Технология непрерывной разливки

Для уменьшения величины осевой пористости, степени осевой ликвации, пораженности слитка трещинами, размеров зоны столбчатых кристаллов с пониженной прочностью и пластичностью, а так же с целью уменьшения размывания огнеупоров (стаканов, стопоров) перегрев металла, подаваемого в кристаллизатор, над температурой ликвидус должен быть минимальным. Оптимальны следующие температурные условия перегрева:

— температура металла в промежуточном ковше на 20-30 °С выше температуры ликвидуса;

— перепад температур металла в промежуточном ковше в пределах +15 и -10°С;

— перегрев в сталеразливочном ковше выше температуры в промковше на 40 — 45 °С.

После окончания разливки предыдущей плавки (или серии плавок при разливке методом «плавка на плавку») МНЛЗ готовят к следующей разливке. В эту подготовку входят следующие операции: выведение из машины конца отливавшегося слитка; проверка стенок кристаллизатора и его положения относительно оси МНЛЗ; проверка форсунок вторичного охлаждения и расстояния между роликами и брусьями зоны вторичного охлаждения и тянущих устройств, осмотр прочего оборудования; введение затравки в кристаллизатор и заделка зазора между головкой затравки и кристаллизатором (асбестом, глиной); покрытие внутренней поверхности стенок кристаллизатора тонким слоем смазки (солидолом, парафиновой, графитовой смазкой).

Перед началом разливки устанавливают нагретый до 1000-12000С промежуточный ковш в заданное положение над кристаллизатором, осуществляют подачу воды на кристаллизатор и ЗВО. Промежуточный ковш наполняют металлом на высоту 0,4—0,6 м и затем, открывая стопор, начинают подавать металл в кристаллизатор. Длительность заполнения кристаллизатора до начала вытягивания слитка должна обеспечить образование достаточно толстой корки затвердевшего металла и ее прочное сцепление с затравкой; для слитков среднего и крупного сечений это время составляет 0,5— 2,0 мин.

По истечении заданного времени при неполностью заполненном кристаллизаторе, включают механизм вытягивания слитка; одновременно автоматически включается механизм качания кристаллизатора. В течение 1—2 мин скорость вытягивания слитка повышают до заданного значения; в дальнейшем ее стараются поддерживать постоянной во избежание образования дефектов в слитке. Скорость разливки подбирают опытным путем, учитывая, что при ее увеличении возрастает производительность установки, но уменьшается толщина корки слитка па выходе из кристаллизатора Скорость разливки зависит от сечения слитка, марки разливаемой стали, состояния оборудования МНЛЗ, обычно понижаясь при увеличении сечения слитка и степени легированности стали. Для слитков толщиной более 150 мм скорость разливки находится в пределах 0,4— 2,0 м/мин, для более мелких слитков достигает 4—8 м/мин,

Металл в кристаллизатор подают либо открытой струей (см. рисунок 34, а), либо «под уровень» с помощью удлиненных составных стаканов, конец которых погружен в металл на глубину 50—100 мм (рисунок 34, б, в). Подачу «под уровень» осуществляют вертикальной (рисунок 34, б), либо горизонтальными или наклонными струями (рисунок 34, в). Разливка под уровень предотвращает окисление и разбрызгивание струи металла и уменьшает его охлаждение, снижает пораженность слитка поверхностными продольными трещинами. Подачу вертикальными струями применяют при отливке слитков, близких по сечению к кругу или квадрату; подачу через погружаемые стаканы с боковыми отверстиями — для  плоских слитков.

При разливке без подачи в кристаллизатор шлаковых смесей на его стенки подают смазку, которая уменьшает трение слитка о стенки, способствуя предотвращению зависания и разрывов корки слитка. В качестве смазки часто используют парафин и рапсовое масло, расход парафина составляет 0,2—0,7 кг/т стали.

При разливке через погружаемые стаканы поверхность металла в кристаллизаторе защищают от охлаждения, окисления и возможного образования заворотов окисленной корки шлаковыми покрытиями, для чего в кристаллизатор вводят шлаковые смеси, которые, соприкасаясь с жидким металлом, расплавляются, образуя слой жидкого шлака. Состав смесей отличается разнообразием, в них могут входить CaO, SiО2, A12О3, Na2O, K2O, СаР2, MgO, иногда 20—30 % порошкообразного графита. При разливке со шлаковым покрытием смазку в кристаллизатор не подают; роль смазки выполняет тонкий слой шлака, налипающего на стенки кристаллизатора.

При подаче металла в кристаллизатор нельзя допускать перерывов струи и резкого изменения количества подаваемого металла. Перерыв струи ведет к образованию спаев (поясов) на слитке. Изменение расхода металла вызывает колебания уровня металла в кристаллизаторе и появление ужимин на поверхности слитка. Постоянство уровня металла в кристаллизаторе на большинстве УНРС обеспечивают, регулируя подачу металла из промежуточного ковша с помощью стопора.

8.5 Качество непрерывнолитого слитка

Кристаллическая структура непрерывнолитого слитка схожа со структурой слитков, полученных разливкой в изложницы – наружная корка из мелких неориентированных кристаллов (ее толщина 10-20 мм), далее столбчатые кристаллы и в осевой части слитка различно ориентированные равноосные кристаллы; в слитках мелкого сечения зона столбчатых кристаллов может простираться до центра слитка.

Непрерывный слиток благодаря малой толщине и быстрому вследствие этого затвердеванию отличается меньшим развитием химической неоднородности, более равномерным распределением неметаллических включений. От слитков, разливаемых в изложницы, он отличается также более чистой и гладкой поверхностью.

Ниже перечислены основные дефекты слитков, получаемых непрерывной разливкой.

Сильно развита в них осевая пористость, что объясняется наличием в кристаллизующемся слитке очень глубокой и узкой лунки жидкого металла. Осевая пористость заметно усиливается при увеличении перегрева металла и повышенной скорости разливки, иногда переходя в осевые усадочные пустоты. Заметно выражена в непрерывных слитках осевая ликвация, при этом по длине слитка располагаются отдельные участки увеличенной ликвации.

В слитках криволинейных и особенно горизонтальных УНРС наблюдается некоторая несимметричность структуры и распределения составляющих стали, поскольку зона затвердевания последних порций металла, а следовательно, и усадочная пористость, и скопление ликвидирующих примесей смещены к верхней грани слитка; у верхней грани наблюдается также повышенное содержание неметаллических включений вследствие их всплывания.

Иногда наблюдается искажение формы слитка. Для слитков квадратного сечения характерна ромбичность – искажения профиля слитка в кристаллизаторе, когда квадратное сечение деформируется в ромбическое. Причины: перекос слитка в кристаллизаторе под воздействием несоосно расположенных с ним опорных роликов, неравномерное охлаждение различных граней слитка в кристаллизаторе. Раздутие слитка (выпуклость его поперечного сечения) возникает под воздействием ферростатического давления столба жидкой стали в слитке; возникновению дефекта способствуют повышенные скорости разливки и температура металла, что уменьшает толщину затвердевшей корки; недостаточная интенсивность вторичного охлаждения; отклонения в настройке опорных роликов; увеличенное расстояние между опорными роликами.

Распространенным дефектом являются трещины – поверхностные и внутренние. Продольные поверхностные трещины на гранях слитка имеют длину до 1-1,5 м и более и глубину до 10-15мм. Эти трещины (рисунок 35, 5) являются результатом усадочных напряжений и образуются при неравномерном прилегании формирующейся корки к стенкам кристаллизатора в местах уменьшенной ее толщины, которые возникают из-за снижения теплоотвода там, где корка отходит от стенок (например в результате деформации слитка или коробления стенок кристаллизатора). Действенным средством борьбы с этим дефектом является разливка с защитным шлаковым покрытием, поскольку образующаяся между коркой и стенками кристаллизатора тонкая шлаковая прослойка существенно снижает неравномерность теплоотвода.

Продольные трещины по ребрам (углам) (см. рисунок 35, 7) образуются в квадратных слитках при искажении профиля в кристаллизаторе. В слябах такие трещины возникают на расстоянии ~350 мм от уровня металла в кристаллизаторе в случае отхода корки слитка от узкой стенки кристаллизатора вследствие ее износа или изменения угла ее наклона (неправильная установка кристаллизатора).

Поперечные поверхностные трещины (см. рисунок 35, 10) (надрывы корки) возникают в кристаллизаторе вследствие усиленного трения при недостаточной смазке стенок и вследствие зависания корки при наличии на стенках кристаллизатора царапин, вмятин. Такие трещины могут возникать при изгибании или выпрямлении слитка на УНРС с криволинейной осью. Поперечные трещины в углах слитка (рисунок 35, 9) могут также образовываться в результате слишком интенсивного вторичного охлаждения.

Паукообразные и сетчатые трещины (см. рисунок 35, 8) схожи, каждая трещина распространяется из одного центра в нескольких направлениях. Паукообразные трещины возникают в кристаллизаторе при неравномерном прилегании корки к его стенкам в местах плотного прилегания, т. е в участках наиболее сильного охлаждения. Пораженность этими трещинами снижается при разливке со шлаковым покрытием в кристаллизаторе. Сетчатые трещины образуются в зоне вторичного охлаждения при температурах 700-9000С в результате чередования нагревов и охлаждений поверхности слитка (охлаждение у форсунок и разогрев за счет внутреннего тепла слитка при его движении между форсунками). Количество этих трещин сильно снижается при переходе от водяного к более мягкому водовоздушному вторичному охлаждению.

Многообразные внутренние трещины образуются в результате совместного воздействия термических напряжений в охлаждаемом слитке и механических усилий от опорных, тянущих и изгибающих роликов. Распространены внутренние трещины, перпендикулярные широким граням слитка (см. рисунок 35, 4); основной причиной их возникновения считают механическое воздействие роликов на затвердевающую корочку слитка и средством борьбы с ними – правильную настройку роликовой проводки и сохранение постоянства расстояния между роликами. Такие трещины могут также возникать из-за термических напряжений при неравномерном вторичном охлаждении.

Гнездообразные трещины (см. рисунок 35, 4а) – скопления мелких, схожих с трещинами типа 4 и располагающихся ближе них к центру слитка образуются при разгибании слитка с жидкой сердцевиной.

Осевые трещины (см. рисунок 35, 3)  в слябах располагаются по их большой оси в зоне смыкания фронтов кристаллизации. Считают, что эти трещины образуются в результате усадки стали, если она не компенсируется сжимающим усилием опорных роликов; особенно они проявляются при выпучивании широких граней слитка, когда сжимающие усилия явно недостаточны. В слитках квадратного сечения, где усадка сконцентрирована в центре слитка, форма осевых трещин иная (см. рисунок 35, 1).

Трещины,  перпендикулярные узким граням (см. рисунок 35, 6) и расположенные вблизи от них, возникают при выпучивании широких граней слитка, т. е при недостаточном поддержании оболочки слитка опорными устройствами.

 Диагональные трещины (см. рисунок 35, 2)  на стыке кристаллов, растущих от двух смежных граней, встречаются преимущественно в слитках квадратного сечения при искажении профиля в тупых углах.

Газовые пузыри в корковом слое слитка возникают при достаточно раскисленном металле, высоком содержании в нем водорода, повышенном содержании влаги в защитной шлаковой смеси, вводимой в кристаллизатор. Ряд поверхностных дефектов слитка связан с неудовлетворительной организацией разливки. Шлаковые включения на поверхности возникают при заливке жидким металлом прилипающих к стенкам кристаллизатора частиц шлака или размытых огнеупоров. Ужимины (поперечные углубления на поверхности слитка) возникают в результате резкого изменения напора струи и колебаний уровня металла в кристаллизаторе, при местном размывании корки струей металла и в участках неплотного прилегания корки к стенкам кристаллизатора.

8.6 Литейно-прокатные комплексы

При сооружении этих установок используется принцип совмещенных процессов отливки и прокатки листовых заготовок большой длины, т.е. двух технологий — непрерывного литья заготовки, поперечное сечение которой приближается по параметрам к размерам готового изделия, и непосредственного совмещения процесса разливки с прокаткой тонкой полосы. Схематически это можно представить следующим образом: непрерывное литье тонких заготовок - разделение полосы - подогрев, выравнивание температуры - горячая прокатка - охлаждение, смотка

Литейно-прокатные комплексы с тонкослябовыми (с толщиной заготовки до 100 мм) МНЛЗ начали сооружать в начале 90-х годов и в настоящее время их количество составляет более 1000 шт.

Другим вариантом получения листового проката являются установки непрерывной отливки полосы. Патент на прямую отливку полосы с подачей металла в зазор между двумя вращающимися валками получен в 1866 г. Генри Бессемером.

Технология прямой отливки полосы обладает многими преимуществами, но прежде всего она исключает такие операции традиционного процесса, как отливка и зачистка слябов, повторный нагрев и горячая прокатка. В результате значительно сокращаются капитальные вложения, связанные с оборудованием, и уменьшаются примерно на 85% энергозатраты по сравнению с традиционной технологией.

Из всех валковых машин в настоящее время находятся в эксплуатации только двухвалковые машины (рисунок 36). В этих установках кристаллизатор состоит из двух валков, расположенных непосредственно под промежуточным ковшом и вращающихся в противоположных направлениях. Жидкая сталь поступает в пространство между валками и при контакте с поверхностью валков кристаллизуется, образуя корочки, которые двигаются вместе с поверхностью и выходят из валков в форме листа, толщина которого определяется расстоянием между валками, а ширина — боковыми стенками кристаллизатора.

Очень важная проблема — отвод тепла из зоны кристаллизации, скорость потока которого составляет 102 —104 °С/с. Вначале валки изготавливали из стали, затем из меди, сейчас наиболее широко используют сплав меди с хромом, в некоторых случаях с покрытием поверхности валка никелем, что обеспечивает высокую теплопроводность и достаточную механическую прочность инструмента. Для отвода выделяющегося тепла валки охлаждают водой.

Серьезную проблему представляет конструкция боковых стенок, которые должны удерживать жидкую сталь, предотвращая ее прорывы из кристаллизатора, и обеспечивать одинаковую температуру металла около стенок и в средней части кристаллизатора, чтобы исключить деформацию кромок листа. В качестве материала боковых стенок используют нитрид бора или кремния.

Проводятся исследования по удержанию ванны жидкой стали с помощью электромагнитного поля.

Еще одна важная задача — получить лист заданной толщины. Расширение валков при нагреве приводит к уменьшению зазора. Если при отливке сляба толщиной 150 мм изменение ширины на 1 мм несущественно и при горячей прокатке исправимо, то при отливке 2-3мм листа оно недопустимо. Следует, безусловно, избегать образования трещин и морщин на поверхности листа, так как при отливке тонкого листа трещина глубиной 1 мм может оказаться сквозной.

Продолжительность непрерывной разливки зависит главным образом от срока службы прижимных боковых плит-уплотнителей (ограничителей жидкой ванны). Последние изготавливают из несмачиваемых сталью композитных материалов. Износ использованных на установке плит составлял 0,5 и 1,3 мм/км полосы при отливке соответственно тонкой (2,8 мм) и толстой (4,2 мм) полос. Максимальный срок соответственно 100 и 129 мин (при разливке 90-т плавки).

Расчетная стойкость никелевого покрытия роликов отвечает разливке 3 — 7 тыс.т стали в зависимости от толщины отливаемой полосы.

Технологическая схема получения тонкого листа с применением двухвалковых МНЛЗ позволяет в 8—10 раз снижать затраты энергетических ресурсов, в 40—50 раз сократить потери металла в окалину, в 5—10 раз повысить производительность труда, в 10—20 раз снизить выбросы парниковых газов при существенном уменьшении затрат на капитальное строительство, что обеспечивает экономическую мотивацию в части его дальнейшего развития и совершенствования. Сравнение энергозатрат при различных вариантах производства полосового проката приведено на рисунке 37.


Рекомендуемая литература

  1.  Металлургия стали./ Под ред. Явойского В.И. и Кряковского Ю.В. М.: Металлургия, 1984. – С.125-187.
  2.  Баптизманский В.И. Теория кислородно-конвертерного процесса. М.: Металлургия, 1975. – С.14-47.
  3.  Металлургия стали. Теория и технология плавки стали. Бигеев. А.М., Бигеев В.А. Магнитогорск: МГТУ, 2000. – С.342-352.
  4.  Дюдкин, Д.А. Современная технология производства стали. / Д.А. Дюдкин, В.В. Кисиленко. М.: Теплотехника, 2007. – 528 с.
  5.  Металлургия стали / Явойский, В.И., Кряковский, Ю.В., Григорьев, В.П. и др. – М.: Металлургия, 1983. – 584с.
  6.  Кудрин, В.А. Теория и технология производства стали: Учебник для вузов.- М.:  "Мир", ООО "Издательство АСТ", 2003. - 528 с.
  7.  Чалмерс, Б. Теория затвердевания. М.: Металлургия, 1968. - 280 с.
  8.  Колосов, М.И., Смирнов, Ю.Д. и др. Сменное оборудование для разливки стали. – Челябинск, 1961. – 320с.
  9.  Технология производства стали в современных конвертерных цехах / Колпаков, С.Ф., Старов, Р.В., Смоктий, В.В. и др. – М.: Металлургия, 1991. – 464с.
  10.  Развитие технологии непрерывной разливки стали. Лякишев, Н.П., Шалимов, А.Г. М.: ЭЛИЗ, 2002. - 208 с.
  11.  Емельянов, В.А. Тепловая работа машин непрерывного литья заготовок. – М.: Металлургия, 1988. – 143с.
  12.  Журавлев, В.А., Китаев, Е.М. Теплофизика формирования непрерывного слитка. – М.: Металлургия, 1974. - 216с.
  13.  Литвин, А.В., Мазур, В.Л., Темошенко, В.Л. Разработка литейно-прокатных комплексов для производства листовой стали, тонких слябов и лент за рубежом. Черная металлургия, 1990, №4. – С.23-31.


 

А также другие работы, которые могут Вас заинтересовать

17557. Міжнародні організації, курс лекцій 541.5 KB
  Міжнародні організації – об’єднання суверенних держав, установ, фізичних осіб, заснованих на базі міжнародних договорів і статутів для виконання певних цілей. Мають постійно діючі органи.
17558. Права доступу protected в C++ 36 KB
  ЛАБОРАТОРНА РОБОТА № 22 Тема:Права доступу protected. Ціль:Ознайомити з доступом до компонентів базового класу при закритому спадкуванні include include class Gruzoperevozchik { protected: float vremya; float stoimost; char mesto[15]; float rasst; Gruzoperevosc...
17559. Основи програмування С++. Базові типи даних та ввод-вивод 209.5 KB
  ЛАБОРАТОРНА РОБОТА № 1 Тема:Основи програмування С. Базові типи даних та вводвивод Мета: отримання практичних навичок в роботі з типами даних мови C і використання функцій стандартного вводувиводу. Приклад рішення задачі Буд...
17560. Структури в С++ 111.5 KB
  ЛАБОРАТОРНА РОБОТА № 3 Тема:Структури в С. Мета: отримання навичок роботи із структурами. Теоретична частина Тип даних структура об'єднує декілька змінних можливо різного типу. Змінні які об'єднані структурою називаються полями структури чи елементами ст...
17561. Освоєння основ програмування в програмному середовищі VISSIM 124 KB
  Лабораторна робота №1 з дисципліни: Автоматизоване проектування ТЗЗІ Тема: Освоєння основ програмування в програмному середовищі VISSIM Мета: спроектувати довільну модель. Теоретичні відомості Будьяке коло яке містить RLелементи має властивість часто...
17562. Дослідження методів функціонування модуляторів та демодуляторів 605.5 KB
  Лабораторна робота №1 з дисципліни: Автоматизоване проектування ТЗЗІ Тема: Дослідження методів функціонування модуляторів та демодуляторів Мета: Вивчити особливості функціювання різноманітних модуляторів та демодуляторів. Теоретичні відомості В зага...
17563. Дослідження методів кодування в каналах передачи інформації 315.5 KB
  Лабораторна робота №3 з дисципліни: Автоматизоване проектування ТЗЗІ Тема: Дослідження методів кодування в каналах передачи інформації Мета: Кодування джерела інформації каналу передачи лінії зв’язку криптографічне кодування. Ход работы 1 На первой сх
17564. Канали передачі інформації 2.02 MB
  Лабораторна робота №4 з дисципліни: Автоматизоване проектування ТЗЗІ Тема: Канали передачі інформації Контрольные вопросы и задания для Гауссового канала При определении отношения Es/No канала AWGN разд. 3.5 используется два опорных значения средней мощн
17565. Ущільнення та розділення каналів 232.5 KB
  Лабораторна робота №5 з дисципліни: Автоматизоване проектування ТЗЗІ Тема: Ущільнення та розділення каналів Дифференциальное разделение каналов На передающей стороне используется дифференциальный трансформатор Т1 а на приемной – такой же по конструкци