32233

Синтез оптимального по быстродействию программного управления

Лекция

Информатика, кибернетика и программирование

3 Где уравнение динамики объекта управления Поскольку то максимум функции Н реализуется одновременно с максимумом функции: 9. Решим задачу определения оптимального по быстродействию программного управления на примере объекта второго порядка: .1 То структурная схема объекта представлена на рис. Структурная схема объекта управления В соответствии со структурной схемой на рис.

Русский

2013-09-04

211 KB

16 чел.

Лекция №9

Синтез оптимального по  быстродействию программного управления

Как уже отмечалось на практике  наиболее часто стоит задача синтеза регуляторов, оптимальных по быстродействию. Критерием оптимальности  является функционал (6.1), а именно:

                                 (9.1)

Эта задача имеет смысл только при учете ограничения управляющего воздействия (6.2): .

Решение этой задачи методом классического вариационного  исчисления связано с большими трудностями (см. лекцию №6). Поэтому наиболее подходящим  для этих целей является использование принципа максимума или динамического программирования.

Применим принцип максимума  для решения задачи о предельном быстродействии.

Из (9.1)    следует, что:

                                       (9.2)

Значит расширенная функция Гамильтона, согласно (6.17) будет:

,                        (9.3)

Где       -уравнение динамики объекта управления

Поскольку     ,

то максимум функции Н* реализуется одновременно с максимумом функции:

                              (9.4)

Дополнительные переменные определяются уравнениями Гамильтона (6.18):

                                 (9.5)

Необходимо найти такой закон оптимального управления  при ограничении (9.2), при котором  функция Гамильтона

                              

на отрезке времени 0.

Решим задачу определения  оптимального по быстродействию программного управления  на примере объекта второго порядка:

.   (п.9.1)

То структурная схема объекта представлена на рис. 9.1.

                       Рис.9.1. Структурная  схема объекта управления

В соответствии со структурной схемой на рис.9.1 запишем уравнение динамики объекта относительно переменных (координат) х1, х2.

                          (п.9.2)

где

Функция Гамильтона (9.3) будет:

  (п.9.3)

Уравнения Гамильтона (9.5):

                                   ,

поэтому примем

,       (п.9.4)

,   (п.9.5)

Из решения уравнения (п.9.4) определяем:

                         .                                             (п.9.6)

Из уравнения (п.9.5) с учетом  (п.9.6) получим:

.  (п.9.7)

Для определения , при  котором функция Н будет максимальна, составим функцию из слагаемых выражения (п.9.3), зависящих от u:

                                 (п.9.8)

Оптимальный закон управления определяется из максимального значения Н*, т.е. Н*m=H().

C учетом ограничения  на основе (9.8) получаем:

                               (п.9.9)

                                                   (п.9.10)

где                                                          (п.9.11)

Структурная схема разомкнутой системы,  состоящей из оптимального регулятора и объекта управления, представлена на рис 9.2.

Рис.9.2. Структурная схема разомкнутой  системы с релейным регулятором, оптимальная по быстродействию.

Из анализа выражения (п.9.11) следует, что функция  будет переключать реле  один раз с +um на -um ,т.е.  будет иметь два знакопостоянных   интервала (рис.9.3) .

Рис.9.3. Кривая оптимального по быстродействию переходного   процесса для объекта второго порядка

Тот же результат  был получен при решении задачи с помощью вариационного исчисления  с применением штрафной функции.

Моменты переключения  t1 и tк  определяются  из решения уравнения (п.9.2)  с учетом граничных условий по интервалам u= um  и u=- um .Затем эти интервалы отсекутся (метод решения уравнений припасовыванием).

В общем случае задача определения   оптимального программного управления по максимальному быстродействию на основе принципа максимума  решается по следующей методике.

Дано описание динамики объекта управления в координатах состояния:

,                                        (9.6)

где А – матрица коэффициентов, размерностью [nn],

В – входная матрица,  размерностью [nm],

X – “n”-мерный вектор переменных состояния объекта,

U- “m”-мерный вектор  управляющих воздействий

Заданы начальные условия:

Х(0)=Хн; Х(tк)=Хк и ограничения на управляющие воздействия:

               или , j=1,2…                          (9.7)

Критерий качества управления:

                                                                       (9.8)

Необходимо найти вектор , при котором время перехода tк состояния объекта из начального в конечное будет минимальным.

Запишем функцию Гамильтона с учетом, что ,

                          (9.9)

На основании (9.9)  упростим вид функции:

                        (9.10)

Максимальное значение  этой функции, т.к. , будет:

                                                (9.11)

при  на оптимальной траектории изменения состояния объекта.

Соотношения (9.10) и (9.11) вместе  с начальными и  конечными условиями образуют набор условий, достаточный для решения задачи.

Запишем в векторной форме сопряженные с уравнением динамики объекта (9.6) уравнения Гамильтона (9.5) для вспомогательных переменных:

                               (9.12)

Решая его, получим, что

                                        (9.13)

Где   

Представим входную матрицу в виде совокупности вектор-столбцов:

В=[b1,b2,...,bm]                                   (9.14)

С учетом (9.14) уравнение (9.6) примет вид:

               (9.15)

Для объекта  с одним управляющим воздействием

                                 (9.16)

Функция (9.10) с учетом  (9.15) будет:

 (9.17)

Для объекта (9.16)

                         (9.18)

Введем функцию:

, i=1,2,…,m               (9.19)

Из (9.17) выпишем слагаемые, зависящие от  управляющих воздействий:

              (9.20)

Для объекта (9.16):

                                       (9.21)

При этом  функции Н, Н*, Н** достигают максимума по U одновременно.

Следовательно, задача нахождения  сводится к определению

при             (9.23)

Эта функция линейно зависит  от  и поэтому достигает максимума на границе допустимой  области . Следовательно, условие оптимальности зависит только от знака (t).

, i=1,2,…,m              (9.24)

при условии, что (t)=0 в отдельные моменты t, называемые моментами переключения  с um на - um и обратно. Следовательно, оптимальный закон  изменения u(t) имеет  разрывный характер (рис. 9.4)

Рис.9.4. Изменение  в зависимости от (t).

Теорема об “n” интервалах

Уравнение (9.24) определяет качественный характер алгоритма управления оптимального по быстродействию.

Более точное представление  об особенностях этого алгоритма дает теорема об “n” интервалах.  Она  формулируется следующим образом:

Если объект управления  описывается дифференциальным уравнением “n” –ого порядка  все его корни действительные и отрицательные, или другими словами: матрица А имеет собственные числа  - действительные и отрицательные, тогда максимальное  число знакопостоянных интервалов управляющего воздействия не превосходит “n”, а число  переключений превосходит (n-1). На каждом интервале управляющее воздействие  имеет максимальную по амплитуде величину.

На рис. (9.5)  представлен график  для объекта 5-ого порядка.

Рис. 9.5. Изменение  для объекта 5-ого порядка.

Из условия (9.19) следует, что нули (t) зависят от решения , которые в некоординатной форме записываются следующим образом:

                               , i=1,2,…,n.

Отсюда 

, i=1,2,…,m,

где сij,cj – постоянные интегрирования, зависящие  от начальных условий , которые не известны. Поэтому теорема об “n” интервалах устанавливает только верхнюю границу числа интервалов. Анализ показывает, что функция  (t) (9.25) как сумма  “n” экстремумов имеет число нулей, т.е. число переключений , не более (n-1).

Следующей проблемой является определение моментов переключения .

Динамика объекта с одним управляющим воздействием (n=1) описывается уравнением (9.16). Решением этого уравнения при  будет:

,

где t1,t2,…,tn-1 – моменты переключения. Уравнение (9.26) решаем методом припасовывания, как правило, численно с помощью ЭВМ.


 

А также другие работы, которые могут Вас заинтересовать

23754. Набольший общий делитель 34.5 KB
  Основные цели: вывести алгоритм нахождения НОД чисел на основе их разложения на простые множители сформировать способность к использованию выведенного алгоритма для решения задач; повторить и закрепить решение неравенств задач на одновременное движение действия со смешанными числами. – Что даёт нам умение раскладывать числа на простые множители Ещё один метод нахождения делителей числа. – А что зная делители числа мы находили Общие делители НОД. – Как называются все числа кратные 2 Четные числа.
23755. Набольший общий делитель 35.5 KB
  Основные цели: тренировать способность к практическому использованию алгоритма нахождения НОД на основе разложения чисел на простые множители; исследовать частные случаи нахождения НОД когда НОД а b = 1 НОД а b = а; сформировать понятие взаимно простых чисел; повторить и закрепить понятие смежных углов решение задач на одновременное движение примеров на порядок действий. – Здравствуйте ребята – Над какой темой мы с вами работали Нахождение НОД чисел методом разложения на простые множители. – Сегодня мы продолжим исследовать...
23756. Наибольший общий делитель 69.5 KB
  Основная цель: тренировать способность к нахождению НОД на основе разложения чисел на простые множители способность к рефлексии собственной деятельности; повторить и закрепить решение уравнений решение задач методом уравнений графическое изображение множеств с помощью диаграммы Венна. – Какой темой мы занимались на предыдущих уроках Нахождение НОД чисел методом разложения чисел на простые множители. – Чему равен НОД взаимно простых чисел НОД взаимно простых чисел равен 1. – Найдите: а НОД а b; б НОД b с; в НОД а с.
23757. Открытие нового знания 49.5 KB
  – Можно ли утверждать что числа a b и c кратны числу 14 a = b = c = Числа a и b кратны числу 14 т. в разложении этих чисел есть множители числа 14 а число с – нет т. в нём не содержится разложения числа 14. – Найдите частное от деления числа a на число 14 числа b на число 14.
23758. Открытие нового знания 38 KB
  – Здравствуйте ребята – Какая основная задача стояла перед нами на прошлых уроках Мы вывели новый способ нахождения НОК используя разложение чисел на простые множители. – Сегодня на уроке мы продолжим работать над нахождением НОК чисел и рассмотрим нахождение НОК разных чисел. – Найдите НОК 15 24: а составляя множества К 15 и К 24; б перебирая кратные 24; в с помощью разложения чисел 15 и 24 на простые множители.
23759. Наименьшее общее кратное 73 KB
  Основная цель: тренировать способность к нахождению НОК на основе разложения чисел на простые множители способность к рефлексии собственной деятельности; повторить и закрепить распределительное свойство умножения правило деления произведения на число действия с многозначными числами формулы объема и площади поверхности куба. – Чему мы научились на предыдущих уроках Мы учились находить НОД и НОК чисел разными способами. – Сегодня вы будете проверять на сколько хорошо вы усвоили метод нахождения НОД и НОК используя разложения чисел на...
23760. Признак делимости на 3 и на 9 48 KB
  Основные цели:– тренировать способность к доказательству общих утверждений на примере признаков делимости на 3 и на 9; повторить и закрепить изученные свойства и признаки делимости решение текстовых задач решение примеров на порядок действий построение формул зависимости между величинами. – Какие признаки делимости мы изучили Признаки делимости на 2 на 5 на 10 на 4 на 8 на 25. – А зачем нам нужны признаки делимости Что бы быстрее определять делится ли число на данное или нет.
23761. Признак делимости на 3 и на 9 57.5 KB
  – А зачем нам нужны признаки делимости Что бы быстрее определять делится ли число на данное или нет. Затруднения могут быть при выполнении задания тех случаях где множитель не делится ни на 3 ни на 9 или делится только на 3. 54 делится на 3 и третье т. 15 делится на 3.
23762. Признак делимости на 9 43 KB
  – А зачем нам нужны признаки делимости – Что бы быстрее определять делится ли число на данное или нет. Будет ли число представленное выражением d 235 делиться на5 – Всё зависит от того какое значение принимает d потому что если каждое слагаемое делится на 5 то и вся сумма разделится на 5 ели одно слагаемое делится на 5 а другое не делится на 5 то вся сумма не разделится на 5. 2 Будет ли число представленное выражением 271k делится на 2 –Всё зависит какое значение принимает k т. по свойству делимости произведения...