32233

Синтез оптимального по быстродействию программного управления

Лекция

Информатика, кибернетика и программирование

3 Где уравнение динамики объекта управления Поскольку то максимум функции Н реализуется одновременно с максимумом функции: 9. Решим задачу определения оптимального по быстродействию программного управления на примере объекта второго порядка: .1 То структурная схема объекта представлена на рис. Структурная схема объекта управления В соответствии со структурной схемой на рис.

Русский

2013-09-04

211 KB

17 чел.

Лекция №9

Синтез оптимального по  быстродействию программного управления

Как уже отмечалось на практике  наиболее часто стоит задача синтеза регуляторов, оптимальных по быстродействию. Критерием оптимальности  является функционал (6.1), а именно:

                                 (9.1)

Эта задача имеет смысл только при учете ограничения управляющего воздействия (6.2): .

Решение этой задачи методом классического вариационного  исчисления связано с большими трудностями (см. лекцию №6). Поэтому наиболее подходящим  для этих целей является использование принципа максимума или динамического программирования.

Применим принцип максимума  для решения задачи о предельном быстродействии.

Из (9.1)    следует, что:

                                       (9.2)

Значит расширенная функция Гамильтона, согласно (6.17) будет:

,                        (9.3)

Где       -уравнение динамики объекта управления

Поскольку     ,

то максимум функции Н* реализуется одновременно с максимумом функции:

                              (9.4)

Дополнительные переменные определяются уравнениями Гамильтона (6.18):

                                 (9.5)

Необходимо найти такой закон оптимального управления  при ограничении (9.2), при котором  функция Гамильтона

                              

на отрезке времени 0.

Решим задачу определения  оптимального по быстродействию программного управления  на примере объекта второго порядка:

.   (п.9.1)

То структурная схема объекта представлена на рис. 9.1.

                       Рис.9.1. Структурная  схема объекта управления

В соответствии со структурной схемой на рис.9.1 запишем уравнение динамики объекта относительно переменных (координат) х1, х2.

                          (п.9.2)

где

Функция Гамильтона (9.3) будет:

  (п.9.3)

Уравнения Гамильтона (9.5):

                                   ,

поэтому примем

,       (п.9.4)

,   (п.9.5)

Из решения уравнения (п.9.4) определяем:

                         .                                             (п.9.6)

Из уравнения (п.9.5) с учетом  (п.9.6) получим:

.  (п.9.7)

Для определения , при  котором функция Н будет максимальна, составим функцию из слагаемых выражения (п.9.3), зависящих от u:

                                 (п.9.8)

Оптимальный закон управления определяется из максимального значения Н*, т.е. Н*m=H().

C учетом ограничения  на основе (9.8) получаем:

                               (п.9.9)

                                                   (п.9.10)

где                                                          (п.9.11)

Структурная схема разомкнутой системы,  состоящей из оптимального регулятора и объекта управления, представлена на рис 9.2.

Рис.9.2. Структурная схема разомкнутой  системы с релейным регулятором, оптимальная по быстродействию.

Из анализа выражения (п.9.11) следует, что функция  будет переключать реле  один раз с +um на -um ,т.е.  будет иметь два знакопостоянных   интервала (рис.9.3) .

Рис.9.3. Кривая оптимального по быстродействию переходного   процесса для объекта второго порядка

Тот же результат  был получен при решении задачи с помощью вариационного исчисления  с применением штрафной функции.

Моменты переключения  t1 и tк  определяются  из решения уравнения (п.9.2)  с учетом граничных условий по интервалам u= um  и u=- um .Затем эти интервалы отсекутся (метод решения уравнений припасовыванием).

В общем случае задача определения   оптимального программного управления по максимальному быстродействию на основе принципа максимума  решается по следующей методике.

Дано описание динамики объекта управления в координатах состояния:

,                                        (9.6)

где А – матрица коэффициентов, размерностью [nn],

В – входная матрица,  размерностью [nm],

X – “n”-мерный вектор переменных состояния объекта,

U- “m”-мерный вектор  управляющих воздействий

Заданы начальные условия:

Х(0)=Хн; Х(tк)=Хк и ограничения на управляющие воздействия:

               или , j=1,2…                          (9.7)

Критерий качества управления:

                                                                       (9.8)

Необходимо найти вектор , при котором время перехода tк состояния объекта из начального в конечное будет минимальным.

Запишем функцию Гамильтона с учетом, что ,

                          (9.9)

На основании (9.9)  упростим вид функции:

                        (9.10)

Максимальное значение  этой функции, т.к. , будет:

                                                (9.11)

при  на оптимальной траектории изменения состояния объекта.

Соотношения (9.10) и (9.11) вместе  с начальными и  конечными условиями образуют набор условий, достаточный для решения задачи.

Запишем в векторной форме сопряженные с уравнением динамики объекта (9.6) уравнения Гамильтона (9.5) для вспомогательных переменных:

                               (9.12)

Решая его, получим, что

                                        (9.13)

Где   

Представим входную матрицу в виде совокупности вектор-столбцов:

В=[b1,b2,...,bm]                                   (9.14)

С учетом (9.14) уравнение (9.6) примет вид:

               (9.15)

Для объекта  с одним управляющим воздействием

                                 (9.16)

Функция (9.10) с учетом  (9.15) будет:

 (9.17)

Для объекта (9.16)

                         (9.18)

Введем функцию:

, i=1,2,…,m               (9.19)

Из (9.17) выпишем слагаемые, зависящие от  управляющих воздействий:

              (9.20)

Для объекта (9.16):

                                       (9.21)

При этом  функции Н, Н*, Н** достигают максимума по U одновременно.

Следовательно, задача нахождения  сводится к определению

при             (9.23)

Эта функция линейно зависит  от  и поэтому достигает максимума на границе допустимой  области . Следовательно, условие оптимальности зависит только от знака (t).

, i=1,2,…,m              (9.24)

при условии, что (t)=0 в отдельные моменты t, называемые моментами переключения  с um на - um и обратно. Следовательно, оптимальный закон  изменения u(t) имеет  разрывный характер (рис. 9.4)

Рис.9.4. Изменение  в зависимости от (t).

Теорема об “n” интервалах

Уравнение (9.24) определяет качественный характер алгоритма управления оптимального по быстродействию.

Более точное представление  об особенностях этого алгоритма дает теорема об “n” интервалах.  Она  формулируется следующим образом:

Если объект управления  описывается дифференциальным уравнением “n” –ого порядка  все его корни действительные и отрицательные, или другими словами: матрица А имеет собственные числа  - действительные и отрицательные, тогда максимальное  число знакопостоянных интервалов управляющего воздействия не превосходит “n”, а число  переключений превосходит (n-1). На каждом интервале управляющее воздействие  имеет максимальную по амплитуде величину.

На рис. (9.5)  представлен график  для объекта 5-ого порядка.

Рис. 9.5. Изменение  для объекта 5-ого порядка.

Из условия (9.19) следует, что нули (t) зависят от решения , которые в некоординатной форме записываются следующим образом:

                               , i=1,2,…,n.

Отсюда 

, i=1,2,…,m,

где сij,cj – постоянные интегрирования, зависящие  от начальных условий , которые не известны. Поэтому теорема об “n” интервалах устанавливает только верхнюю границу числа интервалов. Анализ показывает, что функция  (t) (9.25) как сумма  “n” экстремумов имеет число нулей, т.е. число переключений , не более (n-1).

Следующей проблемой является определение моментов переключения .

Динамика объекта с одним управляющим воздействием (n=1) описывается уравнением (9.16). Решением этого уравнения при  будет:

,

где t1,t2,…,tn-1 – моменты переключения. Уравнение (9.26) решаем методом припасовывания, как правило, численно с помощью ЭВМ.


 

А также другие работы, которые могут Вас заинтересовать

46671. Перестройка государственного аппарата и изменения в праве в годы Великой Отечественной войны и послевоенный период 25.01 KB
  Указом Президиума Верховного Совета СССР была образована Чрезвычайная Государственная комиссия по установлению и расследованию злодеяний немецкофашистских захватчиков и их сообщников и причиненного ими ущерба гражданам колхозам общественным организациям государственным предприятиям и учреждениям СССР. был создан Комитет по учету и распределению рабочей силы при СНК СССР при областных и краевых исполкомах учреждались бюро по учету и распределению рабочей силы. Особая система военной юстиции регламентировалась Указом Президиума Верховного...
46672. Подходы к оценке стоимости нематериальных активов и интеллектуальной собственности 25.04 KB
  Методы доходного подхода Метод прямой капитализации Под капитализацией понимается определение на дату проведения оценки стоимости всех будущих равных между собой или изменяющихся с одинаковым темпом величин денежных потоков от использования интеллектуальной собственности за равные периоды времени. Метод дисконтированных денежных потоков При этом под дисконтированием понимается процесс приведения всех будущих денежных потоков от использования интеллектуальной собственности к дате проведения оценки по определенной оценщиком ставке...
46673. Попытки осуществления политических и экономических реформ.Н.С.Хрущёв 25.38 KB
  В 55г начинается кукурузная кампания Хрущева. Лозунг Хрущева догнать и перегнать Америку. 64г со всех постов и Хрущева. Однако следует отметить и глубокую враждебность Хрущева.
46674. Пеня 25.5 KB
  Сумма соответствующих пеней уплачивается помимо причитающихся к уплате сумм налога или сбора и независимо от применения других мер обеспечения исполнения обязанности по уплате налога или сбора а также мер ответственности за нарушение законодательства о налогах и сборах. Пеня начисляется за каждый календарный день просрочки исполнения обязанности по уплате налога или сбора начиная со следующего за установленным законодательством о налогах и сборах дня уплаты налога или сбора. Пени уплачиваются одновременно с уплатой сумм налога и сбора или...
46676. Метод прогонки 29.52 KB
  Метод прогонки Метод прогонки является частным случаем метода Гаусса и применяется к системам с трехпятидиагональной матрицей см. Предполагается что Метод прогонки состоит из двух этапов: прямой прогонки и обратной прогонки. В силу сказанного основу метода прогонки составляет так называемая прогоночная формула 4.