32234

Синтез замкнутых систем управления, оптимальных по быстродействию

Лекция

Информатика, кибернетика и программирование

невозможно путём интегрирования уравнений объекта найти уравнения траекторий в nмерном пространстве.6 в этом случае можно представить относительно других координат: где i = 12n Тогда уравнения проекций фазовых траекторий на координатные плоскости при U = const будут иметь вид: Интегрируя это выражение получим: где ; координаты точек через которые проходит проекция 10.2 С помощью уравнений проекций фазовых траекторий определяем координаты точек переключений U.6 получим выражение...

Русский

2013-09-04

147 KB

7 чел.

Лекция 10.

Синтез замкнутых систем управления, оптимальных по быстродействию

Для реализации управления используется функция      , где     - вектор координат состояния объекта (рис. 10.1).

Рис. 10.1 Структура замкнутой САУ, оптимальной по быстродействию.

Вектор   является функцией времени, следовательно         - неявная функция времени.

Вид функции должен быть определён так, чтобы нули функции              совпадали с нулями функции, которая была определена для программного переключения U:

При этом не требуется точного совпадения функций                и         на нтервалах между нулями.

Определение         аналитическим способом для объектов порядка n > 2 связано с большими трудностями, т.к. невозможно путём интегрирования уравнений объекта найти уравнения траекторий в «n»мерном пространстве.

Одним из приёмов, когда все собственные числа матрицы А уравнения (9.6) различны, её можно представить в диагональной форме:

Уравнение динамики объекта (9.6) в этом случае можно представить относительно других координат:

где  i = 1,2,…,n)

Тогда уравнения проекций фазовых траекторий на координатные плоскости    при U = const будут иметь вид:

Интегрируя это выражение, получим:

где                      ;

- координаты точек, через которые проходит проекция (10.2)

С помощью уравнений проекций фазовых траекторий определяем координаты точек переключений U. Для определения     широко применяют также численные методы.

Аналитически задача максимального быстродействия решается для объектов 2-го порядка, т.к. фазовые траектории строятся на плоскости (x1, x2).

Рассмотрим решение задачи на примере:

Или в виде дифференциального равнения:

где        

В фазовых координатах объект (10.3) описывается следующим образом:

где x1=x

Начальные условия состояния объекта: x1(0)=x, x2(0)=0. Требуется перевести объект в конечное состояние x1(t k)=x11, x2(t k)=0 за минимальное время t, при ограничении |U| <= Um.

Найдём уравнение фазовой траектории, разделив первое уравнение системы (10.5) на второе:

где       .

Произведя интегрирование (10.6), получим выражение для семейств фазовых траекторий:

Вид этих траекторий представлен на рисунке 10.2.

Рис. 10.2. Фазовый портрет, состоящий из фазовых траекторий (10.7)

Для траекторий, проходящих через начало координат x1=0, x2=0 (установившийся режим). Из (10.7) видим, что постоянная интегрирования при x1=0 и          определяется выражением:

Следовательно, уравнение фазовых траекторий, проходящих через начало координат, будет следующим:

Это уравнение границы перехода из           в область     .

(траектория D0 на фазовой плоскости (рис. 10.2))

Аналогично находится граница перехода из области          в область

- траектория D10.

Система управления должна автоматически определять знак U на первом интервале. Правильный выбор можно сделать, если принять:

 

После подстановки (10.10) в (10.9) получим:

При движении изображающей точки состояния объекта при её попадании на линию D0D1 происходит изменение знака при Um (см. рис. 10.2).

На основании уравнения (10.11) получим функцию переключения U:

Учитывая, что         выражение (10.12) можно записать в следующем виде:

Следовательно, условие    определяет требуемый алгоритм оптимального управления. Структурная схема замкнутой САУ, оптимальной по быстродействию, представлена на рис.10.3. На этой структурной схеме нелинейный блок F(x2) осуществляет следующее преобразование:

 

 

Упростим реализацию функции F(x2). Для этого функцию логарифма разложим в ряд Тейлора:

Ограничившись двумя первыми слагаемыми ряда (10.15), получим из (10.13), что:

Кроме того, заменим операцию дифференцирования измерением координаты x2.

В результате получим упрощённую структуру замкнутой САУ, оптимальной по быстродействию (рис. 10.4).

Рис.10.2. Упрощённая замкнутая САУ, оптимальная по быстродецствию.

Следующим шагом упрощения является замена функции F(x2) постоянным коэффициентом, который определяется прямой B0B1 (рис. 10.2). Эта упрощённая связь показана штриховой линией на рис. 10.3.

Рис. 10.3. Структура оптимальной по быстродействию замкнутой САУ.


 

А также другие работы, которые могут Вас заинтересовать

22342. Прием цифровых сигналов при наличии шумов 191 KB
  Модуляция несущей происходит в передатчике и параметры модулированного сигнала полностью определяются выбранным методом модуляции и возможностями элементной базы. Ситуация усложняется еще тем что все параметры среды распространения сигнала определяются только статистически и в значительной степени приближенно. Функциональные схемы приемника цифровых сигналов Для высокочастотного сигнала типовой приемник имеет функциональную схему супергетеродина т.
22343. Синхронизация гетеродина приемника с несущей частотой 112.5 KB
  Вовторых применение оптимального фильтра максимизирующего отношение сигнал шум принятого сигнала также требует снятие отсчетов в строго определенные моменты времени. Эта необходимость возникает в том случае когда в приемнике используется когерентное детектирование ВЧ сигнала. Следовательно несущая и тактовая частоты должны быть восстановлены непосредственно в приемнике из принятого сигнала или получены от того же самого передатчика в виде опорного пилотсигнала. Параметры принятого сигнала Передаваемый и принимаемый сигналы...
22344. КРАТКАЯ ИСТОРИЯ ВОЗНИКНОВЕНИЯ РАДИО. ОСНОВНЫЕ ПРЕОБРАЗОВАНИЯ СИГНАЛА В РАДИОПРИЕМНОМ ТРАКТЕ 71.5 KB
  ОСНОВНЫЕ ПРЕОБРАЗОВАНИЯ СИГНАЛА В РАДИОПРИЕМНОМ ТРАКТЕ Краткая история возникновения радио Свою историю радио начинает с экспериментов Герца по проверке уравнений Максвелла. Поэтому в радиоприемном тракте необходимо решать задачи: выделения полезного сигнала из смеси его с помехами; выделения модулирующей функции; выделения передаваемой информации из модулирующей функции и ее преобразование к удобному для дальнейшего использования виду. Решение перечисленных задач в радиоприемном тракте осуществляется с помощью следующих функций:...
22345. Основные архитектуры РПТ. Шумовые характеристики, динамический диапазон 431.5 KB
  Как и в квадратурном смесителе здесь используется пара идентичных смесителей на которые помимо РЧ сигнала подается сигнал с гетеродина в квадратуре. Сигналы в I и Q каналах содержат полную информацию об огибающей входного сигнала и могут быть обработаны в соответствующим образом построенном демодуляторе. В приемнике прямого преобразования наличие рассогласования в цепях смесителя и ФНЧ не ведет к ухудшению селективности а лишь к некоторому искажению полезного сигнала что зачастую не имеет никакого значения при приеме цифровых данных....
22346. Входные каскады РПТ. Высокочастотные фильтры, УРЧ 247.5 KB
  С точки зрения минимизации вносимых приемником шумов следовало бы в качестве первого каскада использовать малошумящий усилитель МШУ имеющий максимальный коэффициент усиления и минимальный коэффициент шума. Современные МШУ имеют коэффициент шума до 0. В диапазоне частот 450 мГц МШУ имеет коэффициент шума 2. Суммарный коэффициент шума в последовательном включении МШУ фильтр рассчитывается по 1.
22347. Непрерывность функций комплексной переменной 468 KB
  Если то функция называется непрерывной в точке . Иными словами: непрерывна в точке если для любого сколь угодно малого существует положительное число такое что 2 для всех удовлетворяющих неравенству 3 короче . Геометрически это означает что для всех точек лежащих внутри круга с центром в точке достаточно малого радиуса соответствующие значения функции изображаются точками лежащими внутри круга с центром в точке сколь...
22348. Интегрирование функций комплексной переменной 1.52 MB
  кривая с выбранным направлением движения вдоль нее и на ней функция комплексной переменной fz. Если C кусочногладкая а значит спрямляемая кривая а fz кусочнонепрерывная и ограниченная функция то интеграл 1 всегда существует. Если функция fz аналитична в односвязной области D то для всех кривых C лежащих в этой области и имеющих общие концы интеграл имеет одно и то же значение. fz аналитическая функция.
22349. Формула Коши и теорема о среднем 821.5 KB
  Пусть функция аналитична в связной области и непрерывна в . Тогда для любой внутренней точки этой области имеет место так называемая формула Коши: 1 где граница области проходимая так что область остается всё время слева. Таким образом формула Коши позволяет вычислить значение аналитической функции в любой точке области если известны граничные значения этой функции. Выбросим из области кружок радиусом с центром в точке и заметим что в полученной...