32235

Аналитическое конструирование регуляторов (АКОР)

Лекция

Информатика, кибернетика и программирование

он ограничивает и отклонение переменных состояния объекта управления и управляющего воздействие данная задача определения оптимального регулятора получила широкое распространение. Задана динамика объекта управления: ; 1 или 1 где А=[nn] коэффициентная матрица динамики объекта B=[nm] матрица коэффициентов управляющих воздействий xiн=xi0 xiк=xitк граничные условия. Критерий...

Русский

2013-09-04

137.5 KB

175 чел.

Лекция №12

Аналитическое конструирование регуляторов (АКОР)

Как было определено ранее, синтез замкнутой САУ по квадратичному интегральному критерию дает регулятор в виде линейных обратных связей по координатам состояния объекта управления.

Ввиду простоты реализации такого регулятора  и универсальности квадратичного критерия оптимальности, т.к. он ограничивает и отклонение переменных состояния объекта управления и управляющего воздействие, данная задача определения оптимального регулятора получила широкое распространение. Оптимальный регулятор получается  аналитическим решением задачи оптимизации, и поэтому данная методика синтеза получила название -  аналитическое конструирование регуляторов (АКОР).

Рассмотрим аналитическое конструирование регулятора в общем виде.

Задана динамика объекта управления:

;                                           (1)

или

,                            (1*)

где А=[nn] -  коэффициентная  матрица динамики объекта,

B=[nm] – матрица коэффициентов управляющих воздействий,

xiн=xi(0), xiк=xi(tк) – граничные условия.

Критерий оптимальности:

,                       (2)

где Q=[nn]; R[nm] – матрицы коэффициентов, определяющие величины ограничений отклонений переменных состояний (координат) объекта управления и расход энергии в переходящих процессах.

С учетом (1*) критерий (2) можно представить в следующем виде:

.                   (2*)

Необходимо найти оптимальный закон управления или управление регулятора для оптимальной замкнутой САУ.

Для решения задачи используем принцип максимума.

Составим функцию Гамильтона:

          (3)

Известно, что .

Следовательно:

.            (4)

Вспомогательные функции определяются из уравнений:

,    (i=1,2,…,n)                               (5)

или в векторной форме:

.                                                     (5*)

Выражение (5*) на основании (4) дает следующую зависимость:

.                                                (6)

Для определения экстремального значения функции Н по управляющим воздействиям U найдем, что:

.                                         (7)

Из (7)  следует, что:

                     .

Следовательно

.                                                     (8)

Вспомогательные функции  будем искать в виде линейной зависимости:

.                                                         (9)

Из (9) следует, что:

.                                           (10)

Кроме того, с учетом (8)  управление динамики объекта (1) можно представить в виде:

.                                     (11)

Добавив к этому уравнению сопряженное уравнение (6), получим систему:

.                                   (12)

Подставив в уравнение (10) значения производных из системы (12) и сделав очевидные преобразования, получим:

                       

Откуда:

                  (13)

Для стационарной системы .

Следовательно:

.                       (14)

Выражения (13) и (14) получили название – нелинейные матричные уравнения Риккати.

Для определения выражения для определения оптимального управления подставим значение  из (9) в (8).

В результате получим:

,                                          (15)

где R – берется из интегрального критерия, а К – определяется из решения уравнения (14).

Подставив выражение (15) в уравнение динамики объекта (1) получим уравнение, описывающее оптимальное изменение состояния объекта под действием Uопт:

.                                   (16)

Структурная схема оптимальной замкнутой САУ в матричном виде представлена на рис.1.

Рис.1. Оптимальная по квадратичному интегральному критерию замкнутая САУ. Обозначено ОУ – объект управления, ОР – оптимальный регулятор.

Таким образом, в результате синтеза получим оптимальный регулятор ОР, который представляет сумму пропорциональных обратных связей по всем переменным состояния (координатам) объекта управления (см.рис.1). Величины коэффициентов обратных связей определяются из решения уравнения Риккати (14).

Пример 1.

Приведенная функция объекта управления:

,

или

,

где

Критерий оптимальности:

.

В этом случае уравнение Риккати (14) примет вид (А=а, B=b, C=1)

,

или

.

где .

Решение этого уравнения дает следующую зависимость:

Следовательно:

Структурная схема оптимальной САУ представлена на рис. 2.

                         

Рис.2. Структурная схема  оптимальной по квадратичному интегральному критерию САУ с объектом первого порядка

Пример 2.

Объект второго порядка:

или

,                                    (п.2.1)

где                       (п.2.2)

а критерий оптимальности:

,

где .

Т.е.

.

Запишем уравнения Риккати:

(п.2.3)         

Матричное уравнение (п.2.3) дает уравнения:

                                      (п.2.4)

Решение  алгебраических уравнений (п.2.4)   с учетом положительной определенности матрицы К:

, и что всегда К1221 дает  следующий результат:

.       (п.2.5)

В соответствии с выражением (15) матрица коэффициентов обратных связей будет иметь следующий вид:

.

Подставляя в это выражение зависимости (п.2.5), получим значения коэффициентов для обратных связей  по х1 и по х2:

.

Структурная схема оптимальной замкнутой САУ представлена на рис. 3.

Рис.3. Оптимальная по квадратичному интегральному критерию замкнутая САУ с объектом второго порядка


 

А также другие работы, которые могут Вас заинтересовать

12624. Знайомство з 1С: Бухгалтерія 397.91 KB
  Звіт з лабораторноі роботи №1 Знайомство з 1С: Бухгалтерія з предмета САОЕІ Мета: Налаштувати параметри програми скласти проводки записати їх в журнал операцій і сформувати оборотносальдову відомість по матеріалам з допомогою програми 1С Бухгалтерія 7.7. Хі...
12625. Робота з інформаційно-довідковою системою «Незалежні виробники товарів і послуг» 711 KB
  Звіт з лабораторної роботи №2 на тему: Робота з інформаційнодовідковою системою Незалежні виробники товарів і послуг по предмету: CАОЕІ Мета: вивчити призначення і можливості інформаційнодовідкової системи Незалежні виробники товарів і послуг навчи...
12626. Робота з інформаційно-довідковою системою «Контакти» 642.81 KB
  Звіт з лабораторноі роботи № 3 Робота з інформаційнодовідковою системою Контакти з предмета САОЕІ Мета роботи: вивчити призначення і можливості інформаційнодовідкової системи КОНТАКТИ. Хід виконання роботи: Вибрала власника програми для вводу влав
12627. Знайомство з програмою Фінансист 767 KB
  Лабораторна робота 4. Тема: Знайомство з програмою Фінансист. Мета : Проведення фінансового аналізу стану та результатів діяльності підприємства використовуючи стандартну фінансову звітність: Баланс та Звіт про фінансові результати ПСБО 2 і 3 відповідно а також дод
12628. Програмний засіб Система: Кадри 1.04 MB
  Звіт з лабораторної роботи № 5 Програмний засіб Система: Кадри з предмета САОЕІ Мета роботи:набути практичних навичок роботи з автоматизованою системою кадрового обліку Кадры навчитися вести безперервний облік персоналу підприємства і кадрового резерву...
12629. Бизнес-план, Организация коллекторского агентства 159.5 KB
  В настоящее время в нашей стране имеются уникальные условия для организации нового вида бизнеса: агентств по сбору просроченной задолженности от юридических и физических лиц (далее именуемые коллекторскими агентствами).