32236

Системы, оптимальные по расходу ресурсов

Лекция

Информатика, кибернетика и программирование

Все они имеют ограничения по величине управляющего воздействия что довольно очевидно.4 В качестве критерия выберем интегральный критерий обеспечивающий одновременно ограничение переходного процесса по времени и по расходу управляющего воздействия п1.16 Системы из исходного состояния х10х20 в начале координат х1к=0х2к=0 должно производится следующим путем изминения управляющего воздействия: п1.17 Следовательно необходимо найти...

Русский

2013-09-04

199 KB

34 чел.

Лекция 11

Системы, оптимальные по расходу ресурсов

(например, топлива)

Дана модель объекта управления:

                           (1)

Или

,               (2)

где i=1,2,…,n; k=1,2,…,m

Начальные и конечные условия (граничные условия):

;                     (3)

Управляющее воздействие (ресурсы) ограничены по величине

                                     (4)

Критерий оптимальности, который соответствует минимальному расходу ресурсов имеет следующий вид:

                                   (5)

Требуется определить оптимальный закон управления объектом (1). Для решения этой задачи воспользуемся принципом максимума.

На основании (5) введем дополнительную переменную

                                        (6)

Функция Гамильтона примет следующий вид:

          (7)

Дополнительные переменные определяются из сопряженных уравнений

,  i=1,2,…,n                             (8)

На основе (7) запишем функцию, состаящую из слагаемых, зависящих от U:

                          (9)

Поменяем порядок суммирования во втором слагаемом выражении (9):

                       (10)

Введем обозначение:

                                          (11)

Функция H* будет максимальной , если каждое слагаемое максимально

                               , j=1,2,…,n.

Учитывая, что -|Uj|≤0, определил закон оптимального управления

                     (12)

Выражение (12) может быть практически реализовано с помощью реле с зоной нечувствительности (рис 16.а)

Рис 16.1 Характеристики исполнительных устройств в системах оптимальных: а)по минимуму расхода ресурсов, б) по быстродействию, в) по минимуму расхода энергии

Обобщая результаты, определенные по разным критериям, можно увидеть сходство и различие в характеристиках устройств, формирующих управляющее воздействие на объект (рис. 16.1). Все они имеют ограничения по величине управляющего воздействия, что довольно очевидно. Минимизация расходов ресурсов требует приминение реле с зоной нечувствительности (рис. 16.1), максимальнее быстродействие – идеальное реле (рис. 16.1б), минимизация расходов энергии – линейное звено с насыщением (рис. 16.1в).

Рассмотрим решение задачи синтеза оптимального управления по расходу ресурсов для объекта управления с одним управляющим воздействием. В этом случае управление (2) объекта управления в развернутом виде будет:

     (13)

Граничные условия, ограничение по ресурсу и критерий оптимальности определяется выражениями (3), (4), (5). Введем дополнительную переменную

                                                                         

Составим функцию Гамильтона

 (14)

Для определения вспомогательных параметров Ψi запишем  систему сопряженных уравнений

                                 

Или с учетом системы (12)

    (15)

В общем виде систему (15) можно представить, как

, i=1,2,…,n                 (16)

Выражение (16) аналогично выражению (7).

Сформируем из (14) функцию из слагаемых, зависящих от U,

.                                (17)

Введем обозначение:

.                                           (18)

Следовательно:

.                                      (19)

Необходимо обеспечить,  чтобы :

                            

Это достигается при следующем алгоритме:

                      (20)

Т.е. выражение (20) как и выражение (11) определяют, что для реализации оптимального управления необходимо исполнительное устройство в виде реле с зоной нечувствительности (рис. 16.1а)

Рассмотрим пример

Объект управления имеет передаточную функцию:

                            (п1.1)

Обозначив

                             ,

запишем (п1.1) в виде системы дифференциальных уравнений:

,                               (п1.2)

где  

Граничные условия:

 (п1.3)

Управляющий ресурс  ограничен по амплитуде:

                                                      (п1.4)

В качестве критерия выберем интегральный критерий, обеспечивающий одновременно ограничение переходного процесса по времени и по расходу управляющего воздействия

                             (п1.5)

Введем дополнительную переменную:

                                            (п1.6)

Сформируем функцию Гамильтона:

               (п1.7)

Примем   .

Тогда,

                                        (п1.8)

Максимум функции (п16.8) при ограничении ресурса (п1.4), а значит оптимальный закон управления, будет определяться слудеющей зависимостью:

                     (п1.9)

Найдем вспомогательные переменные из сопряженной системы уравнений

.     (п1.10)

Из решения системы дифференциальных уравнений (п16.10) следует: .             (п1.11)

Найдем решение уравнений (п1.2)

                   (п16.12)

При U=0 получим:

                      (п1.13)

При U=+Um 

    (п1.14)

Исключив из (п1.13)и(п1.14) время t, получим уравнение фазовых траекторий для U=0

                                  (п1.15)

Для U=Um

   (п1.16)

Системы из исходного состояния (х1020) в начале координат (х=0,х=0) должно производится следующим путем изминения управляющего воздействия:

                        (п1.17)

Следовательно, необходимо найти линии переключения управляющего воздействия с U=±Um на U=0  и с U=0 на U=±Um.

Используя выражения для фазовых траекторий (п1.16) и (п1.17), которые переходят через начало координат получаем, что линия переключения U с ±U на 0 определяется следующим выражением:

.  (п1.18)

Линия переключения U с 0 на ±Um определяется выражением  

.             (п1.19)

Построенные на фазовой плоскости на основе этих выражений линии переключения  представлены на рис п.1

Рис.п.1 Фазовая плоскость с линиями переключения управляющего воздействия: R1 – область, где U=-Um, R4 – область, где U=+Um, R2 и  R3 – область, где U=0.

Структурная схема замкнутой САУ, оптимальной по быстродействию и минимуму расходов управляющего ресурса представив на рис. П.2

Рис. П.2 Структурная схема замкнутой САУ, оптимальной по быстродействию и минимуму расхода управляющего ресурса

В соответсвии с выражениями (п.16.18)и (п16.19) нелинейные обратные связи по х2 имеют вид:

.                          (п1.20)

.               (п1.21)

Для системы, оптимальной только по расходу ресурса, критерйи оптимальности примет следующий вид:

                                                            (п1.22)

Аналогично можно доказать, что в этом случае кривая переключения управляющего воздействия при переходе изображающей точки состояния объекта из области R2 в область R1 и  из области R4 в область R3 остается  , а другая граница переключений будет определятся линейной зависимостью

.                                                           (п1.23)

Рис. п.3  Линии переключения управляющего воздействия в САУ, оптимальной по расходу управляющего ресурса.

На рис.п.3 показан случай перехода состояния системы из области R1(U=-Um) в начало состояния. На линии переключения В0 бцдет место скользящий режим. 


 

А также другие работы, которые могут Вас заинтересовать

61. Учебно-исследовательская деятельность по географии как фактор развития коммуникативных компетенций старшеклассников 994.5 KB
  Исследование как форма организации учебно-познавательной деятельности, коммуникативная компетенция как одна из ключевых компетенций школьников. Особенности формирования коммуникаций в ходе организации исследовательской работы в методике преподавания географии.
62. Проблемы определения и повышения производительности труда на предприятии 536 KB
  Теоретические основы планирования производительности труда и выявление путей ее повышения, расчет производственной программы предприятия. Производительность труда как главный фактор развития экономики.
63. Гігієна праці. Оцінка умов праці на підставі гігієнічної класифікації 26.03 KB
  Оцінка умов праці на підставі гігієнічної класифікації умов праці за показниками шкідливості та небезпечності факторів виробничого середовища, важкості та напруженості трудового процесу.
64. Особливості керування ризиками. Якісний аналіз ризиків 30.77 KB
  Якісний аналіз ризиків, як метод їх подолання. Алгоритм проведення імітаційного моделювання. Керування ризиками в реальному проекті та методи аналізу прийнятих рішень. Ігнорування кореляції та моделювання економічних обмежень.
65. Особенности использования финансового анализа в процессе деятельности предприятия 34.37 KB
  Основные принципы и последовательность анализа финансового состояния предприятия. Роль финансового анализа в процессе принятия управленческих решений. Расчет основных показателей финансовой устойчивости.
66. Місце і роль соціального захисту населення України 39.61 KB
  Соціальна політика держави покликана забезпечити громадянам гарантовані Конституцією України права: на життя, безпечні умови праці, винагороду за працю, захист сім’ї, відпочинок, освіту, житло, охорону здоров’я та медичну допомогу, соціальне забезпечення та сприятливе навколишнє середовище.
67. Особенности расчёта налога на добавленную стоимость экспортных и импортных операций 44.05 KB
  Выявление особенностей применения налоговых вычетов. Особенности исчисления НДС при ввозе продукции. Применение налоговых вычетов при осуществлении экспортных операций. Особенности вычета НДС при импорте работ и услуг.
68. Здоровий спосіб життя. Виховний захід 42 KB
  Спонукати учнів до аналізу способу життя свого та своєї родини, викликати бажання вести здоровий спосіб життя. Стан повного фізичного, духовного та соціального благополуччя, здоров’я (фізичне і моральне).
69. Русский язык и культура речи. Ступени овладения литературным языком 44.71 KB
  Для низшего уровня, для первой ступени овладения литературным языком достаточно правильности речи, соблюдения норм русского литературного языка. Существуют нормы лексические, орфоэпические (фонетические), грамматические – словообразовательные, морфологические, синтаксические.