32236

Системы, оптимальные по расходу ресурсов

Лекция

Информатика, кибернетика и программирование

Все они имеют ограничения по величине управляющего воздействия что довольно очевидно.4 В качестве критерия выберем интегральный критерий обеспечивающий одновременно ограничение переходного процесса по времени и по расходу управляющего воздействия п1.16 Системы из исходного состояния х10х20 в начале координат х1к=0х2к=0 должно производится следующим путем изминения управляющего воздействия: п1.17 Следовательно необходимо найти...

Русский

2013-09-04

199 KB

33 чел.

Лекция 11

Системы, оптимальные по расходу ресурсов

(например, топлива)

Дана модель объекта управления:

                           (1)

Или

,               (2)

где i=1,2,…,n; k=1,2,…,m

Начальные и конечные условия (граничные условия):

;                     (3)

Управляющее воздействие (ресурсы) ограничены по величине

                                     (4)

Критерий оптимальности, который соответствует минимальному расходу ресурсов имеет следующий вид:

                                   (5)

Требуется определить оптимальный закон управления объектом (1). Для решения этой задачи воспользуемся принципом максимума.

На основании (5) введем дополнительную переменную

                                        (6)

Функция Гамильтона примет следующий вид:

          (7)

Дополнительные переменные определяются из сопряженных уравнений

,  i=1,2,…,n                             (8)

На основе (7) запишем функцию, состаящую из слагаемых, зависящих от U:

                          (9)

Поменяем порядок суммирования во втором слагаемом выражении (9):

                       (10)

Введем обозначение:

                                          (11)

Функция H* будет максимальной , если каждое слагаемое максимально

                               , j=1,2,…,n.

Учитывая, что -|Uj|≤0, определил закон оптимального управления

                     (12)

Выражение (12) может быть практически реализовано с помощью реле с зоной нечувствительности (рис 16.а)

Рис 16.1 Характеристики исполнительных устройств в системах оптимальных: а)по минимуму расхода ресурсов, б) по быстродействию, в) по минимуму расхода энергии

Обобщая результаты, определенные по разным критериям, можно увидеть сходство и различие в характеристиках устройств, формирующих управляющее воздействие на объект (рис. 16.1). Все они имеют ограничения по величине управляющего воздействия, что довольно очевидно. Минимизация расходов ресурсов требует приминение реле с зоной нечувствительности (рис. 16.1), максимальнее быстродействие – идеальное реле (рис. 16.1б), минимизация расходов энергии – линейное звено с насыщением (рис. 16.1в).

Рассмотрим решение задачи синтеза оптимального управления по расходу ресурсов для объекта управления с одним управляющим воздействием. В этом случае управление (2) объекта управления в развернутом виде будет:

     (13)

Граничные условия, ограничение по ресурсу и критерий оптимальности определяется выражениями (3), (4), (5). Введем дополнительную переменную

                                                                         

Составим функцию Гамильтона

 (14)

Для определения вспомогательных параметров Ψi запишем  систему сопряженных уравнений

                                 

Или с учетом системы (12)

    (15)

В общем виде систему (15) можно представить, как

, i=1,2,…,n                 (16)

Выражение (16) аналогично выражению (7).

Сформируем из (14) функцию из слагаемых, зависящих от U,

.                                (17)

Введем обозначение:

.                                           (18)

Следовательно:

.                                      (19)

Необходимо обеспечить,  чтобы :

                            

Это достигается при следующем алгоритме:

                      (20)

Т.е. выражение (20) как и выражение (11) определяют, что для реализации оптимального управления необходимо исполнительное устройство в виде реле с зоной нечувствительности (рис. 16.1а)

Рассмотрим пример

Объект управления имеет передаточную функцию:

                            (п1.1)

Обозначив

                             ,

запишем (п1.1) в виде системы дифференциальных уравнений:

,                               (п1.2)

где  

Граничные условия:

 (п1.3)

Управляющий ресурс  ограничен по амплитуде:

                                                      (п1.4)

В качестве критерия выберем интегральный критерий, обеспечивающий одновременно ограничение переходного процесса по времени и по расходу управляющего воздействия

                             (п1.5)

Введем дополнительную переменную:

                                            (п1.6)

Сформируем функцию Гамильтона:

               (п1.7)

Примем   .

Тогда,

                                        (п1.8)

Максимум функции (п16.8) при ограничении ресурса (п1.4), а значит оптимальный закон управления, будет определяться слудеющей зависимостью:

                     (п1.9)

Найдем вспомогательные переменные из сопряженной системы уравнений

.     (п1.10)

Из решения системы дифференциальных уравнений (п16.10) следует: .             (п1.11)

Найдем решение уравнений (п1.2)

                   (п16.12)

При U=0 получим:

                      (п1.13)

При U=+Um 

    (п1.14)

Исключив из (п1.13)и(п1.14) время t, получим уравнение фазовых траекторий для U=0

                                  (п1.15)

Для U=Um

   (п1.16)

Системы из исходного состояния (х1020) в начале координат (х=0,х=0) должно производится следующим путем изминения управляющего воздействия:

                        (п1.17)

Следовательно, необходимо найти линии переключения управляющего воздействия с U=±Um на U=0  и с U=0 на U=±Um.

Используя выражения для фазовых траекторий (п1.16) и (п1.17), которые переходят через начало координат получаем, что линия переключения U с ±U на 0 определяется следующим выражением:

.  (п1.18)

Линия переключения U с 0 на ±Um определяется выражением  

.             (п1.19)

Построенные на фазовой плоскости на основе этих выражений линии переключения  представлены на рис п.1

Рис.п.1 Фазовая плоскость с линиями переключения управляющего воздействия: R1 – область, где U=-Um, R4 – область, где U=+Um, R2 и  R3 – область, где U=0.

Структурная схема замкнутой САУ, оптимальной по быстродействию и минимуму расходов управляющего ресурса представив на рис. П.2

Рис. П.2 Структурная схема замкнутой САУ, оптимальной по быстродействию и минимуму расхода управляющего ресурса

В соответсвии с выражениями (п.16.18)и (п16.19) нелинейные обратные связи по х2 имеют вид:

.                          (п1.20)

.               (п1.21)

Для системы, оптимальной только по расходу ресурса, критерйи оптимальности примет следующий вид:

                                                            (п1.22)

Аналогично можно доказать, что в этом случае кривая переключения управляющего воздействия при переходе изображающей точки состояния объекта из области R2 в область R1 и  из области R4 в область R3 остается  , а другая граница переключений будет определятся линейной зависимостью

.                                                           (п1.23)

Рис. п.3  Линии переключения управляющего воздействия в САУ, оптимальной по расходу управляющего ресурса.

На рис.п.3 показан случай перехода состояния системы из области R1(U=-Um) в начало состояния. На линии переключения В0 бцдет место скользящий режим. 


 

А также другие работы, которые могут Вас заинтересовать

10253. Планирование работ, услуг и развития таможенного дела 137 KB
  Планирование работ услуг и развития таможенного дела Планирование является важнейшим инструментом любого хозяйственного механизма. Планирование таможенного дела включает несколько направлений важнейшим из которых является планирование таможенных работ и услу
10254. Экономические задачи таможенных органов по осуществлению валютного контроля 59.5 KB
  Экономические задачи таможенных органов по осуществлению валютного контроля Расширение внешнеторговых контактов либерализация внешнеэкономических связей упразднение государственной валютной монополии привели к необходимости осуществления контроля за поступл
10255. Различные методологических подходов к оценке экономических результатов деятельности таможенных органов 115 KB
  Различные методологических подходов к оценке экономических результатов деятельности таможенных органов. В данной теме поставлена задача исследовать накопленный опыт анализа и оценки экономических результатов деятельности таможенных органов. Следует сказать...
10256. Восточная философия XIX–XX веков 206.5 KB
  Восточная философия XIX–XX веков Б. Джинджолия Философское знание и религиозный опыт Восточная философия – важнейшая составляющая мировой философии обладающая значительным историческим содержательным и идейным своеобразием. Ее современный этап конец 19-го 20 в...
10257. Характерные черты русской философии. Лосев А.Ф. (1893-1988) 18.01 KB
  Характерные черты русской философии. Лосев А.Ф. 1893-1988 Если мы возьмемся кратко сформулировать общие формальные особенности русской философии то можно выделить такие пункты: 1. Русской философии в отличие от европейской и более всего немецкой философии чуждо стре...
10258. Русская философская традиция 160.5 KB
  Русская философская традиция. СУДЬБЫ РОССИИ. славянофилы и западники Чаадаев П.Я. 1794-1856 Одна из самых прискорбных особенностей нашей своеобразной цивилизации состоит в том что мы все еще открываем истины ставшие избитыми в других странах и даже у народов гора
10259. Філософія права: деякі наукознавчі аспекти 69 KB
  Філософія права: деякі наукознавчі аспекти Сучасний період розвитку українського суспільствознавства зокрема правознавства відзначається розширенням та інтенсифікацією досліджень з філософії права. Проявами цього є низка нових публікацій з цієї проблематики за...
10260. Роль философии права в изучении юриспруденции в Италии 149.81 KB
  О роли философии права в изучении юриспруденции в Италии В последнее время все чаще можно встретить утверждение о том что обучение студентовюристов стало сегодня гораздо более интенсивным правда знаний при этом они получают гораздо меньше. Суждение довольно ре...
10261. К основному вопросу философии права 97 KB
  К основному вопросу философии права С тех пор как в теоретических исследованиях право стало изучаться с точки зрения философии а уже у Гесиода прозвучало: Следуй всегда закону который среди всех благ является наивысшим никогда не учиняй насилия и особенно с того ...