32237

Оптимальное управление. Определение оптимального управления. Критерии оптимальности

Лекция

Информатика, кибернетика и программирование

Количественная мера по которой производится сравнительная оценка качества управления и которая включает в себя максимальное количество отдельных показателей качества управления называется критерием оптимизации. Если эту меру критерий можно выразить формально в виде математического выражения то тогда можно задачу синтеза оптимального управления сформулировать следующим образом. Необходимо найти такой закон управления объектом Ut или UХ где tвремя X внутренние и выходные переменные координаты объекта управления...

Русский

2013-09-04

370.5 KB

48 чел.

Лекция №1

Оптимальное управление

Определение оптимального управления. Критерии оптимальности.

Оптимально - значит лучше (наилучше). Для оценки (определения) что лучше и, тем более что самое наилучшее (т. е. оптимальное), требуется показатель, который называется критерием.

Критерий (от греч. «критериус») - оценочная мера, отличительный признак на основе которого производится оценка, определение или классификация.

  Управление называется оптимальным, если оно обеспечивает наилучший в определенном смысле результат. В простейшем случае оценочным показателем является устойчивость (или запас устойчивости), точность в установившемся режиме, степень уменьшения влияния внешних воздействий, качество переходных процессов.

  Количественная мера, по которой производится сравнительная оценка качества управления, и которая включает в себя максимальное количество отдельных показателей качества управления,  называется критерием оптимизации.

  Если эту меру (критерий) можно выразить формально в виде математического выражения, то тогда можно  задачу синтеза оптимального управления сформулировать следующим образом.

Необходимо найти такой закон управления объектом U(t) или U(Х), где t-время, X - внутренние и выходные переменные (координаты) объекта управления, который обеспечивает экстремальное значение критерию оптимальности J(U).

Критерием оптимальности могут служить величины, характеризующие технические и экономические показатели. Одни критерии требуются сделать максимально возможными (например, производительность технологической установки), другой критерий требуется сделать минимально возможным (например, расход энергии в переходных процессах).

Выбор критерия оптимальности является сложной и творческой задачей. Критерий должен отвечать следующим требованиям:

- отражать максимально точно эффективность управления по техническим или/и экономическим параметрам;

- быть аналитичным, т.е. позволять решать задачу определения оптимального  закона управления формальным, аналитическим путем.

Таким требованиям в максимальной степени отвечают интегральные критерии качества управления.

Виды интегральных критериев и их физический смысл

Простейший интегральный критерий имеет следующий вид:

 ,         (1)

где  x(t) = q3(t) – y(t) – отклонение выходной величины объекта управления от заданного (эталонного) значения. При q3 = 1(t) интеграл (1) равен площади ограниченной кривой q3  и y(t), как показано на рис.1.

Рис. 1. Физический смысл критерия (1)

Оптимальным по критерию (1) будет такое управление, при котором заштрихованная площадь будет минимальна, т.е. когда y(t)  будет наиболее близка к qз (t). В идеале J =0, т е переходный процесс заканчивается  мгновенно.

Главным недостатком критерия (1) является то, что он применим только для монотонных процессов. При процессе с перерегулированием или при колебаниях значение интеграла (1) может оказаться минимальным при низком качестве переходного процесса, так как площади под кривыми q3(t) и y(t) будут иметь разные знаки, т. е. площади будут вычитаться (см. рис 2).

Рис 2 Вычисление величины критерия (1) при колебательном процессе

Избавиться от знака площади позволяет квадратичный интегральный критерий следующего вида:

                (2)

Поэтому критерий (2) нашел широкое практическое применение.

Применение квадратичного интегрального критерия позволяет не только определять законы управления, которые минимизируют отклонение регулируемой  величины от заданного значения, но и минимизировать расход  энергии, затрачиваемой на переходный процесс-перевод объекта управления (рис 3) из одного состояния в другое.

Рис.3. Модель объекта управления в виде передатрчной функции

Энергия, затрачиваемая на переходный процесс, будет пропорциональна  квадрату амплитуды управляющего воздействия U(t), поэтому интегральный критерий, определяющий оптимальный процесс, требующий минимальный расход энергии, будет иметь следующий вид:

.             (3)

Объединение критериев (2) и (3) дает критерий оптимальности, ограничивающий как отклонение регулируемой величины, так и мощности:

  ,   (4)

Где q и c – постоянные коэффициенты, задаваемые в зависимости от того, в какой степени необходимо ограничить   , а в какой

С помощью квадратичного интегрального критерия можно ограничивать также скорость, ускорение и т. д. регулируемой величины:

.   (5)

При синтезе  оптимального закона управления, минимального по расходу материального ресурса (например, топлива) применяется критерий следующего вида:

.           (6)

Интегральный критерий

.    (7)

определяет наиболее быстрый переходный процесс (оптимальный по быстродействию), т. к. его решение дает время, за которое заканчивается переходный процесс: tkmin.

От описания объекта управления в виде передаточной функции

можно перейти к описанию в виде дифференциального уравнения “n”-ого порядка

 (8)

От описания объекта управления в форме уравнения (8) можно перейти к описанию в виде «n» дифференциальных уравнений первого порядка (см. Приложение 1)

Переменные х1, х2, …, хn – называется координатами состояния объекта. В этом случае выходная величина объекта равняется взвешенной суммой координат хi:

,                    (10)

В матричной форме уравнения (9) и (10) записывается следующим образом:

где  X={x1,x2,…,xn}   -вектор координат состояния объекта, А- коэффициентная  квадратная матрица, размерностью [n х n], B- матрица-столбец управляющего воздействия (входная матрица), размерностью [n х 1], С- выходная матрица-строка, размерностью [1 х n].

В общем случае объект может иметь несколько управляющих воздействий и несколько выходных величин. Тогда уравнение (11) будет иметь вид:

где А-матрица [n*n], В-матрица [n х m], С-матрица [к х n], m-число управляющих воздействий, к- число выходных величин.

Для модели объекта в  виде (11) или (12) критерии (1) запишется, как

,      (13)

Или в матричной форме:

,               (14)

где Q=diag{q1,q2,…,q3}

Квадратичный интегральный критерий (3), соответственно будет:

,       (15)

или в матричной форме

     , (16)


 

А также другие работы, которые могут Вас заинтересовать

39871. 40 квартирный жилой дом 5.52 MB
  Для защиты деревянных элементов от возгорания и биологического разрушения обработать их препаратом БОПОД. В каждой квартире установлен газовый котел АльфаКолор работающий на природном газу. Определяем расчетный пролет перемычки: Элемент перемычки работает как однопролетная свободно лежащая равномерно загруженная балка. Плита монолитно связана со ступенями которые армируют по конструктивным соображениям и её несущая способность с учетом работы ступеней вполне обеспечивается.
39872. Разработка эффективной технологии сушки рециклового винилхлорида 1.66 MB
  Наибольший интерес к винилхлориду проявили позднее когда И. Первое промышленное производство винилхлорида основанное на щелочной обработке дихлорэтана изза недостатков не позволили полностью удовлетворить растущие потребности в винилхлориде. Простота и удобство этой реакции позволили за очень короткое время построить первые заводы сначала в Германии а затем в Англии. В настоящее время основным видом сырья для производства винилхлорида традиционно используют этилен ацетилен смеси этилена с ацетиленом получаемые крекингом нафты или...
39873. Производство глицерина производительностью 40000 т/год 331.5 KB
  Это позволило ориентировать нефтигазопереработку на обеспечение народного хозяйства не только топливом маслами и другими товарными продуктами но и дешёвым сырьём для химической и нефтехимической отраслей промышленности производящих различные синтетические продукты: пластические массы синтетические каучуки химические волокна спирты синтетические масла и др. Позже в 1913 году немецким ученым Гейнеманом предпринимались попытки синтезировать глицерин путем омыления 123трихлорпропана получаемого прямым хлорированием пропилена: C12...
39874. Усовершенствование технологии получения глицерина производительностью 40000 т/год 647 KB
  В разделе Автоматизация для контроля выбраны параметры которые позволяют наиболее полно и своевременно контролировать и регулировать ход процесса. Это позволило ориентировать нефтигазопереработку на обеспечение народного хозяйства не только топливом маслами и другими товарными продуктами но и дешёвым сырьём для химической и нефтехимической отраслей промышленности производящих различные синтетические продукты: пластические массы синтетические каучуки химические волокна спирты синтетические масла и др. Позже в 1913 году немецким ученым...
39875. Разработка технологии очистки отходящих газов содовых производств от токсичных компонентов 392 KB
  Одним из перспективных направлений природоохранной деятельности по защите воздушного бассейна от губительного воздействия вредных токсичных веществ содержащихся в отходящих промышленных газах является метод каталитического окисления. Получение кальцинированной соды включает следующие основные стадии: приготовление аммонизированного рассола станция абсорбции; карбонизация аммонизированного рассола с образованием бикарбоната натрия станция карбонизации; отделение бикарбоната натрия от маточника станция фильтрации; очистка и...
39876. Разработка термокаталитического метода обезвреживания отходящих газов цеха абсорбции-дистилляции-карбонизации №3 от токсичных компонентов 1.49 MB
  Одним из перспективных направлений природоохранной деятельности по защите воздушного бассейна от губительного воздействия вредных токсичных веществ содержащихся в отходящих промышленных газах является метод каталитического окисления.3 Источники образования газообразных выбросов производства цеха абсорбциидистилляциикарбонизации №3 На производстве кальцинированной соды к газообразным выбросам относятся: газовые выбросы после промывателя газа колоннII воздух после промывателя воздуха фильтров организованные выбросы после сборника...
39878. ОТЧЕТ по преддипломной производственной практике на ЗАО “Каустик” ЦЕХ № 21 ПРОИЗВОДСТВО ПЕРХЛОРВИНИЛОВОЙ СМОЛЫ 471.5 KB
  Добавление к ЧХУ 3 дихлорбензола позволяет значительно сократить время хлорирования. Из цистерны поливинилхлорид транспортируется по трубопроводу сжатым воздухом давлением 0305 МПа в расходные бункеры поз. 2814 и в силосы поз. Из силосов поливинилхлорид транспортируется по трубопроводу сжатым воздухом давлением 0305 МПа в расходные бункеры поз.
39879. Проверка двигателя на перегрузочную способность и нагрев 483.5 KB
  В задании предполагается, что после отключения двигатель охлаждается до температуры окружающей среды. Время работы не превышает 90 мин, за которое двигатель не достигнет установившейся температуры. Следовательно, в задании имеет место кратковременный режим работы электродвигателя S2.