32238

Определение оптимального управления формулируется в виде трех типов задач

Лекция

Информатика, кибернетика и программирование

Дана замкнутая система управления объект управления и регулятор. Второй тип задач: Дана разомкнутая система автоматического управления. В итоге решения этой задачи получается оптимальная система программного управления см.

Русский

2013-09-04

169 KB

2 чел.

Лекция №2

Определение оптимального управления формулируется в виде трех типов задач.

Первый тип задач: формулируется следующим образом. Дана замкнутая система управления - объект управления  и регулятор. Структура регулятора известна (например, П- или ПИ-регулятор). Нужно определить оптимальные значения коэффициентов этого регулятора, при  которых будет  обеспечивается экстремальное значение (как правило минимальное) критерия оптимальности. Такую задачу можно назвать параметрической оптимизацией.

Второй тип задач:  Дана разомкнутая система автоматического управления. Требуется определить оптимальный закон измерения управляющего воздействия Uопт(t) при котором обеспечивается минимальное значение критерия оптимальности. В итоге решения этой задачи получается оптимальная система программного управления (см. рис 2.1). Такую задачу можно назвать программной оптимизацией.

                                             Uопт(t)                          Y(t)

     

  Рис 2.1 Разомкнутая оптимальная система управления

Третий тип задач: дана замкнутая система управления, структура и параметры регулятора не известны. Их требуется определить исходя из минимизации заданного критерия оптимальности. В результате определяется закон (алгоритм) работы оптимального изменения управляющего воздействия к зависимости (в функции) от состояния объекта управления Uопт(Х), где вектор координат состояния Х. Общая структура такой оптимальной  системы  представлена на рисунке 2.2. Эту задачу можно назвать задачей структурного синтеза оптимального регулятора.

  qз                 х1                                               Uопт(Х)                              Y

          

                                                  x2,x3,…,xn                           

Рис 2.2 общий вид оптимальной замкнутой системы управления

Рассмотрим метод решения задачи параметрической оптимизации.

Дана передаточная функция замкнутой системы управления (рисунок 2.3)

      qз                     x                                    U                                 Y

  

Рис 2.3 структурная схема замкнутой системы автоматического управления

Передаточная функция замкнутой системы, очевидна, будет:

Или в развернутом виде

     (2.1)

Согласно (2.1) управление свободного движения будет описываться дифференциальным уравнением

                                    an+ an-1+…+ a1+ a0y = 0    (2.2)

Запишем уравнение(2.3) в отклонениях состояния системы от заданного состояния.(х=qз-y).при этом очевидно выражение свободного движения будет таким же

an + an-1+…+ a1 + a0x =0

Критерием оптимальности является  интегральный критерий(1.1), т.е.

(2.3)

Кроме того заданны начальные условия, т.е. состояние системы при t = 0:

,

а так же заданны конечные условия, т.е. состояние системы в установившемся значении (t = ∞). Очевидно, что Хк= 0, т.е. система достигла заданного значения, и все производные , будут равны нулю.

Решение этой задачи достаточно очевидно (данная методика была предложена В.С. Кулебякиным). Проинтегрируем уравнение (2.2)

.(2.4)

Последнее слагаемое в (2.4) пропорционально критерию оптимальности(2.2). Следовательно, с учетом начальных и конечных условий получим:

.(2.5)

В выражении (2.5) часть коэффициентов ai от параметров передаточной функции регулятора. Поэтому что бы определить оптимальное значение этого параметра при котором критерий J достигает минимального значения, необходимо найти частную производную по этому параметру и прировнять её к  нулю =0 (2.6)

Из выражения (2.6) можно найти оптимальное значение параметра (коэффициента) или нескольких параметров (коэффициентов) регулятора

Пример: дана  замкнутая САУ (рис.2.1)

                 qз                 х                                       u                                   Y

                             Рис. 2.1 Замкнутая САУ с П- регулятором      

Передаточная функция замкнутой системы:

.(п.2.1)

Следовательно, уравнение свободного движения будет следующим

,(п.2.2)

где     а1+T0;  a0=1+K0Kп                                                              (п.2.3)

Необходимо определить оптимальное значение коэффициента П-регулятора из условия минимума критерия (2.3).

В соответствии  с выражением (2.5) получим:

.                             (п.2.4)

Из выражения (п.2.4) следует очевидный и хорошо известный вывод что чем больше  Kп  тем меньше будет критерий J, так как будет уменьшаться результирующая постоянная времени замкнутой САУ. Это следует из (п.2.1). запишем его в следующем виде:

,     (п.2.5)

где   T0' =T0.     (см. рис. 2.2).

Максимальная величина Kп  ограничивается допустимым максимальным значением управляющего воздействия

        Kпм =                                      (п.2.3)

             y               T0'2                           T0'1                         

                                        qз

                                                                               t

Рис. 2.2. Кривые переходных процессов при Kп2  > Kп1  (T'02 < T'02)

Данный метод достаточно прост и очевиден, однако он применим  только в простейших случаях. Задача значительно усложняется, если структура регулятора содержит несколько коэффициентов, а объект описывается уравнением с порядком n>2. Кроме того, для более совершенного критерия - квадратичного (см. выражение(1.2)) методика определения аналитической зависимости этого критерия от параметров замкнутой система так же значительно усложняется (см. приложение 2). По этому данный метод параметрической оптимизации не нашёл широкого применения.

Более эффективным является определение законов оптимального управления путем решения задач второго и третьего типов методом вариационного исчисления.


 

А также другие работы, которые могут Вас заинтересовать

42481. ОПРЕДЕЛЕНИЕ МОДУЛЯ СДВИГА И МОМЕНТОВ ИНЕРЦИИ ТВЁРДЫХ ТЕЛ НА УСТАНОВКЕ «КРУТИЛЬНЫЙ МАЯТНИК» 1.2 MB
  Крутильный маятник по своему конструктивному устройству аналогичен крутильным весам. Различие, однако, в том, что весы используются в статическом режиме равновесия, а маятник применяется в динамическом режиме. При этом детали его конструкции вращаются, периодически изменяя направление поворота. Определение моментов инерции тел относительно главных и парал лельных осей 7 2. Измерение момента инерции рамки крутильного маятника...
42482. Расширение пределов измерений приборов магнитоэлектрической системы 94 KB
  Для того чтобы на основе гальванометра сделать амперметр параллельно гальванометру подключают сопротивление называемое шунтом рис. Так как требовалось расширить предел измерения гальванометра по току в n раз то ; тогда и 5.4 Если цена деления гальванометра по току равна k1 цена деления амперметра стала равной k1n а чувствительность прибора при этом уменьшилась в n раз.
42483. Сигнали цифрового лінійного тракту ВОСПІ 281.5 KB
  Специфіка оптичного волокна як середовища для передачі сигналу також оптоелектронні компоненти передаючого і приймельного пристроїв накладають обмеження на параметри цифрового сигналу що поступає в лінійний тракт Волоконнооптичної системи передачі тому виникає необхідність перекодування вихідного двійкового цифрового потоку в погоджений з волоконнооптичним трактом лінійний сигнал. Код вибирається в залежності від конкретних умов передачі: виду вихідних повідомлень параметрів волоконнооптичної лінії звязку що...
42484. Моделювання та дослідження нерекурсивного фільтра на основі швидкого перетворення Фур’є 433 KB
  Львів 2011 Хід роботи 1. УВАГА Зберігання виконаної роботи проводити виключно командою Sve ll 3. Для виконання лабораторної роботи скопіювати фрагмент коду позначений коментарем 5лабораторна робота: Нерекурсивні фільтри на основі ШПФ в кінець програми після директиви endif. Вибрати пункт 5 та проаналізувати варіант виконання лабораторної роботи.
42486. ИСПОЛЬЗОВАНИЕ ВИЗУАЛЬНЫХ МАНИПУЛЯЦИОННЫХ МЕТАФОР ПРИ РАЗРАБОТКЕ ИНФОРМАЦИОННОЙ СИСТЕМЫ 333.5 KB
  В процессе работы была подробно проанализирована метафора «Человек в стеклянном кубе», позволявшая отображать результаты запросов пользователей на реалистичной трехмерной модели человека. При этом, был найден удобный «манипулятор», который обеспечивает не только отображение статичных запросов пользователей, но и взаимодействие в реальном времени пользователя и интерфейса.
42488. Затухання цифрового лінійного тракту ВОСПІ 238 KB
  На магістральних ділянках ВОСП довжиною L коефіцієнт помилок не повинен перевищувати : Де М нормоване значення р для гіпотетичної лінії передачі протяжністю 25000 км визначене в відповідності з рекомендацією МККТТ G. Для регенераційної ділянки довжиною Lр нормуюче значення коєфіцієнта помилок одного регенератора: Різниця між рівнями потужності оптичного сигналу дБ на виході передаючої частини Ри і на вході приймальної частини апаратури Р0мін при якій коєфіцієнт помилок регенерації сигналу в ПРОМ не...