32240

Синтез оптимального управления путем решения общей задачи Лагранжа

Лекция

Информатика, кибернетика и программирование

2 Эти уравнения получаются из описания динамики объекта управления. Рассмотрим решение общей задачи Лагранжа для объекта второго порядка: .8 Запишем уравнение динамики объекта в фазовых переменных координатах: x1=qзy; .7 Для объекта второго порядка i=12 они будут иметь вид: 4.

Русский

2013-09-04

177 KB

14 чел.

Лекция №4

Синтез оптимального управления путем решения общей задачи Лагранжа

В 1759 году появилась первая работа Лагранжа по вариационному исчислению. Лагранж развил идею Эйлера для случая, когда экстремали xi(t) функционала

                              (4.1)

(см. также (3.1)) должны удовлетворять на ряду с граничными условиями  еще дополнительным связям в виде дифференциальных уравнений:

      (4.2)

Эти уравнения получаются из описания динамики объекта управления.

Задача с дополнительными дифференциальными (или голономными) связями называется общей задачей Лагранжа по определению условного экстремума функционала.

Для решения этой задачи составляется вспомогательная функция:

.  (4.3)

Или в сокращенном виде:

,                    (4.4)

где F – подынтегральная функция критерия (функционала) (4.1) или (3.1),

fi – дифференциальные уравнения связи (4.2),

- некоторые дополнительные функции (множители Лагранжа), подлежащие определению.

На основе вспомогательной функции  составляется  вспомогательный функционал:

    (4.5)

Этот функционал, зависящий от "n” функций xi(t) и от “n” функций , исследуется на безусловный экстремум, так как  благодаря введению функции  все функции хi могут варьироваться независимо. В результате получаем задачу Эйлера.

Для функционала (4.5)  записываем “n” уравнений названных уравнениями Эйлера-Лагранжа:

              (4.6)

или подставляя из(4.4) выражение для , получим:

.    (4.7)

Эти уравнения совместно с уравнениями (4.2) образуют систему из 2n уравнений с 2n неизвестными, т.е. задача имеет решение. При этом постоянные интегрирования определяются из граничных условий.

Рассмотрим решение общей задачи Лагранжа  для объекта второго порядка:

.    (4.8)

Запишем уравнение динамики объекта в фазовых переменных (координатах):

x1=qз-y;  .

Исходя из  (4.8) получаем:

,              (4.9)

где а21=.

Граничные условия:

x1(tн)=х; х2(tк)=х=0 (y=qз); х1(tк)=х=0;  x2(tк)=х=0.

Задан квадратичный интегральный критерий оптимальности:

           (4.10)

Требуется определить оптимальный в смысле критерия (4.10) закон изменения управляющего воздействия uопт(t), при котором объект из начального состояния х, х переводится в конечное состояние х, х (оптимальное программное управление) и оптимальный регулятор uопт1, х2) для замкнутой САУ.

Принимая во внимание (4.1) и (4.9) запишем выражения для вспомогательного функционала:

.    (4.11)

Следующим этапом является получение системы уравнений Эйлера-Лагранжа (4.7)

Для объекта второго порядка (i=1,2) они будут иметь вид:

         (4.12)

Определим, что:

Очевидно, что:

.

Аналогично:

Подставляя значения частных производных в уравнения  (4.12) получим:

                         (4.13)

Оптимальное значение управляющего воздействия должно доставлять минимальное значение функционалам J и J*. Поэтому должно выполняться условие, что

                           (4.14)

Подставляя в (4.14) выражение (4.11), получим:

                                     (4.15)

Следовательно

                                                       (4.16)

Таким образом, чтобы определить оптимальный закон управления uопт(t),  нужно определить из системы дифференциальных уравнений (4.14) и уравнений динамики объекта (4.9) выражение для  с учетом выражения (4.16) получим:

                                   (4.17)

Характеристическое уравнение системы (4.17):

р4 - 2Вр2+с=0,                                                      (4.18)

где В=,     

Корни уравнения (4.18) будут:

            (4.19)

Общим решением уравнения (4.17) будет:

.                  (4.20)

Из начальных условий следует, что слагаемые в (4.20) с положительными корнями р1 и р3  равны нулю, т.е. с1=0 и с3=0. Таким образом:

                                       (4.21)

Аналогично:

                                      (4.22)

Значения постоянных интегрирования с2, с46, с8 – определяются из граничных условий. Подставив (4.22) в (4.16) получим закон изменения  управляющего воздействия для оптимального программного регулятора:

,                            (4.33)

где ;.

Для определения закона оптимального  управления для замкнутой САУ необходимо найти зависимость управляющего воздействия от переменных состояний объекта  uопт(x1,x2). Для этого выразим производную  через переменные состояния объекта.  Для этого возьмем первую и вторую производные от х1(t), определяемую выражением (4.21). В результате получим, что:

                  (4.24)

Подставив выражение (4.24) во второе уравнение системы (4.17) получим:

uопт=-к1х12х2                                               (4.25)

где к12р421; к22422                                                        (4.26)

Значения р2 и р4 определяются выражением (4.19).

Таким образом получаем замкнутую систему с ПД регулятором, коэффициенты которого определяются соотношением (4.26) (см.рис. 4.1)

Рис. 4.1. Замкнутая система управления с оптимальным по критерию (4.10)

                   с ПД регулятором.

Если представить модель объекта управления в переменных состояния (4.9), то структурная схема САУ будет иметь вид, представленный на рис. 4.2. В этом случае ПД-регулятор превращается в регулятор состояния объекта.

Рис. 4.2 Замкнутая система управления с оптимальным по критерию (4.10)

                  с регулятором состояния.

Оба регулятора дают один и тот же результат.  Схема с регулятором состояния имеет то преимущество, что не надо производить операцию дифференцирования. Но применение этой схемы возможно, если х2- измеряемое, а иначе надо использовать наблюдатель состояния объекта.

Пример.

Объект первого порядка

                        (п.4.1)

Запишем (п.4.1) в виде дифференциального уравнения относительно х.

,                               (п.4.2)

где .

Граничные условия:  х1(0)=х;  х1(∞)=0.

Необходимо найти оптимальный в смысле критерия (4.10) закон управления uопт(t) для разомкнутой САУ и оптимальный регулятор uопт1) для замкнутой САУ.

Вспомогательный функционал будет иметь следующий вид:

.   (п.4.3)

Уравнение Эйлера-Лагранжа для объекта первого порядка будет:

                   (п.4.4)

Найдем, что:

С учетом этих выражений уравнение (п.4.4) примет вид:

.                             (п.4.4)

Оптимальное значение управляющего воздействия должно обеспечить экстремум критерию (п.4.3). Следовательно, должно выполняться условие, что:

                                         (п.4.5)

или  подставляя в (п.4.5) значение J*  (п.4.3)получим:

Следовательно

                                     (п.4.6)

Определим  из системы уравнений (п.4.2) и (п.4.4) с учетом выражения (п.4.6):

                                 (п.4.7)

Характеристическое  уравнение системы (п.4.7) определяется следующим образом                           det(Ip-A) = p2-B,

где B=.

Следовательно:

.                          (п.4.8)

Решение системы уравнений (п.4.7) будет (положительный корень р1 опускаем, т.к. управление должно быть не расходящимся (устойчивым)):

,                              (п.4.9)

.                         (п.4.10)

Из первого уравнения системы (п.4.7) определим оптимальный закон программного управления:

Подставив в это выражение значения х1 и   получим:

                        (п.4.11)

где с1=

Из выражений (п.4.9) и (п.4.11) получим зависимость uопт1) для замкнутой САУ:

.                    (п.4.12)

Из этого следует, что:

,                             (п.4.13)

где оптимальный коэффициент П-регулятора

.                                   (п.4.14)

Структурная схема полученной САУ  представлена на рис. п.4.3.

Рис. п.4.3  Замкнутая оптимальная по квадратичному интегральному критерию система с П- регулятором, коэффициент которого определяется (п.4.14)

Определим выражение для Копт через параметры объекта. Для этого в (п.4.13) подставим  выражение (п.4.8) для коэффициентов а и b из выражения (п.4.1):

.     (п.4.14)

Из (п.4.14) требования минимизации отклонения выхода одного сигнала за счет увеличения в интегральном критерии коэффициента веса q, и минимизация расхода энергии за счет увеличения коэффициента веса r являются противоречивыми. На практике в зависимости от конкретных условий ищется компромисс.


 

А также другие работы, которые могут Вас заинтересовать

32764. Приминение первого начала термодинамики к изопроцессам и адиабатному процессу идеального газа. Зависимость теплоёмкости идеального газа от вида процесса 88 KB
  Приминение первого начала термодинамики к изопроцессам и адиабатному процессу идеального газа. Зависимость теплоёмкости идеального газа от вида процесса. Тогда для произвольной массы газа получим Q=dU=mCvT M Изобарный процесс p=const. При изобарном процессе работа газа при расширении объема от V1 до V2 равна и определяется площадью прямоугольника.
32765. Работа, совершаемая идеальным газом в различных процессах 32 KB
  Работа совершенная идеальным газом в изотермическом процессе равна где число частиц газа температура и объём газа в начале и конце процесса постоянная Больцмана. Работа совершаемая газом при адиабатическом расширении численно равная площади под кривой меньше чем при изотермическом процессе. Работа совершаемая газом при изобарном процессе при расширении или сжатии газа равна = PΔV. Работа совершаемая при изохорном процессе равна нулю т.
32766. Адиабатный процесс. Уравнение Пуассона для адиабатного процесса 28 KB
  Уравнение Пуассона для адиабатного процесса. Уравнение адиабаты уравнение Пуассона.18 после соответствующих преобразований получим уравнение адиабаты: TVg1 = const или pVg = const.20 Уравнение 13.
32767. Политропический процесс. Теплоёмкость газа в политропическом процессе 28.5 KB
  Политропический процесс. Теплоёмкость газа в политропическом процессе. Рассмотренные выше изохорический изобарический изотермический и адиабатический процессы обладают одним общим свойством имеют постоянную теплоемкость. Термодинамические процессы при которых теплоемкость остается постоянной называются политропными.
32768. Закон Максвелла для распределения молекул идеального газа по скоростям и энергиям 26.5 KB
  Закон Максвелла для распределения молекул идеального газа по скоростям и энергиям. Закон распределения молекул идеального газа по скоростям закон Максвелла определяет вероятное количество dN молекул из полного их числа N число Авогадро в данной массе газа которые имеют при данной температуре Т скорости заключенные в интервале от V до V dV: dN N=FVdV FV функция распределения вероятности молекул газа по скоростям определяется по формуле; FV=4πM 2πRT3 2 V2 expMV2 2RT где V модуль скорости молекул м с; абсолютная...
32769. Барометрическая формула. Закон Больцмана для распределения частиц во внешнем потенциальном поле 56.5 KB
  Барометрическая формула зависимость давления или плотности газа от высоты в поле тяжести. Для идеального газа имеющего постоянную температуру T и находящегося в однородном поле тяжести во всех точках его объёма ускорение свободного падения g одинаково барометрическая формула имеет следующий вид: где p давление газа в слое расположенном на высоте h p0 давление на нулевом уровне h = h0 M молярная масса газа R газовая постоянная T абсолютная температура. Из барометрической формулы следует что концентрация молекул n или...
32770. Среднее число столкновений и средняя длина свободного пробега молекул. Их связь с концентрацией и размером молекул 56.5 KB
  Среднее число столкновений и средняя длина свободного пробега молекул. Их связь с концентрацией и размером молекул. Средние скорости молекул газа очень велики порядка сотен метров в секунду при обычных условиях. Однако процесс выравнивая неоднородности в газе вследствие молекулярного движения протекает весьма медленно.
32771. Понятие о разрежённых газах. Вакуум и методы его получения 41 KB
  Вакуум и методы его получения. Такое состояние газа называется вакуумом. Разреженный газ Вакуум среда содержащая газ при давлениях значительно ниже атмосферного. Вакуум характеризуется соотношением между длиной свободного пробега молекул газа λ и характерным размером процесса d.
32772. Обратимые и необратимые процессы. Круговой процесс (цикл). Тепловые двигатели и холодильные машины. Термический КПД 52.5 KB
  производит положительную работу за счёт своей внутренней энергии и количеств теплоты Qn полученных от внешних источников а на др. системой или над системой работа А равна алгебраической сумме количеств теплоты Q полученных или отданных на каждом участке К. Отношение А Qn совершённой системой работы к количеству полученной ею теплоты называется коэффициентом полезного действия кпд К. называется прямым если его результатом является совершение работы над внешними телами и переход определённого количества теплоты от более нагретого...