32240

Синтез оптимального управления путем решения общей задачи Лагранжа

Лекция

Информатика, кибернетика и программирование

2 Эти уравнения получаются из описания динамики объекта управления. Рассмотрим решение общей задачи Лагранжа для объекта второго порядка: .8 Запишем уравнение динамики объекта в фазовых переменных координатах: x1=qзy; .7 Для объекта второго порядка i=12 они будут иметь вид: 4.

Русский

2013-09-04

177 KB

14 чел.

Лекция №4

Синтез оптимального управления путем решения общей задачи Лагранжа

В 1759 году появилась первая работа Лагранжа по вариационному исчислению. Лагранж развил идею Эйлера для случая, когда экстремали xi(t) функционала

                              (4.1)

(см. также (3.1)) должны удовлетворять на ряду с граничными условиями  еще дополнительным связям в виде дифференциальных уравнений:

      (4.2)

Эти уравнения получаются из описания динамики объекта управления.

Задача с дополнительными дифференциальными (или голономными) связями называется общей задачей Лагранжа по определению условного экстремума функционала.

Для решения этой задачи составляется вспомогательная функция:

.  (4.3)

Или в сокращенном виде:

,                    (4.4)

где F – подынтегральная функция критерия (функционала) (4.1) или (3.1),

fi – дифференциальные уравнения связи (4.2),

- некоторые дополнительные функции (множители Лагранжа), подлежащие определению.

На основе вспомогательной функции  составляется  вспомогательный функционал:

    (4.5)

Этот функционал, зависящий от "n” функций xi(t) и от “n” функций , исследуется на безусловный экстремум, так как  благодаря введению функции  все функции хi могут варьироваться независимо. В результате получаем задачу Эйлера.

Для функционала (4.5)  записываем “n” уравнений названных уравнениями Эйлера-Лагранжа:

              (4.6)

или подставляя из(4.4) выражение для , получим:

.    (4.7)

Эти уравнения совместно с уравнениями (4.2) образуют систему из 2n уравнений с 2n неизвестными, т.е. задача имеет решение. При этом постоянные интегрирования определяются из граничных условий.

Рассмотрим решение общей задачи Лагранжа  для объекта второго порядка:

.    (4.8)

Запишем уравнение динамики объекта в фазовых переменных (координатах):

x1=qз-y;  .

Исходя из  (4.8) получаем:

,              (4.9)

где а21=.

Граничные условия:

x1(tн)=х; х2(tк)=х=0 (y=qз); х1(tк)=х=0;  x2(tк)=х=0.

Задан квадратичный интегральный критерий оптимальности:

           (4.10)

Требуется определить оптимальный в смысле критерия (4.10) закон изменения управляющего воздействия uопт(t), при котором объект из начального состояния х, х переводится в конечное состояние х, х (оптимальное программное управление) и оптимальный регулятор uопт1, х2) для замкнутой САУ.

Принимая во внимание (4.1) и (4.9) запишем выражения для вспомогательного функционала:

.    (4.11)

Следующим этапом является получение системы уравнений Эйлера-Лагранжа (4.7)

Для объекта второго порядка (i=1,2) они будут иметь вид:

         (4.12)

Определим, что:

Очевидно, что:

.

Аналогично:

Подставляя значения частных производных в уравнения  (4.12) получим:

                         (4.13)

Оптимальное значение управляющего воздействия должно доставлять минимальное значение функционалам J и J*. Поэтому должно выполняться условие, что

                           (4.14)

Подставляя в (4.14) выражение (4.11), получим:

                                     (4.15)

Следовательно

                                                       (4.16)

Таким образом, чтобы определить оптимальный закон управления uопт(t),  нужно определить из системы дифференциальных уравнений (4.14) и уравнений динамики объекта (4.9) выражение для  с учетом выражения (4.16) получим:

                                   (4.17)

Характеристическое уравнение системы (4.17):

р4 - 2Вр2+с=0,                                                      (4.18)

где В=,     

Корни уравнения (4.18) будут:

            (4.19)

Общим решением уравнения (4.17) будет:

.                  (4.20)

Из начальных условий следует, что слагаемые в (4.20) с положительными корнями р1 и р3  равны нулю, т.е. с1=0 и с3=0. Таким образом:

                                       (4.21)

Аналогично:

                                      (4.22)

Значения постоянных интегрирования с2, с46, с8 – определяются из граничных условий. Подставив (4.22) в (4.16) получим закон изменения  управляющего воздействия для оптимального программного регулятора:

,                            (4.33)

где ;.

Для определения закона оптимального  управления для замкнутой САУ необходимо найти зависимость управляющего воздействия от переменных состояний объекта  uопт(x1,x2). Для этого выразим производную  через переменные состояния объекта.  Для этого возьмем первую и вторую производные от х1(t), определяемую выражением (4.21). В результате получим, что:

                  (4.24)

Подставив выражение (4.24) во второе уравнение системы (4.17) получим:

uопт=-к1х12х2                                               (4.25)

где к12р421; к22422                                                        (4.26)

Значения р2 и р4 определяются выражением (4.19).

Таким образом получаем замкнутую систему с ПД регулятором, коэффициенты которого определяются соотношением (4.26) (см.рис. 4.1)

Рис. 4.1. Замкнутая система управления с оптимальным по критерию (4.10)

                   с ПД регулятором.

Если представить модель объекта управления в переменных состояния (4.9), то структурная схема САУ будет иметь вид, представленный на рис. 4.2. В этом случае ПД-регулятор превращается в регулятор состояния объекта.

Рис. 4.2 Замкнутая система управления с оптимальным по критерию (4.10)

                  с регулятором состояния.

Оба регулятора дают один и тот же результат.  Схема с регулятором состояния имеет то преимущество, что не надо производить операцию дифференцирования. Но применение этой схемы возможно, если х2- измеряемое, а иначе надо использовать наблюдатель состояния объекта.

Пример.

Объект первого порядка

                        (п.4.1)

Запишем (п.4.1) в виде дифференциального уравнения относительно х.

,                               (п.4.2)

где .

Граничные условия:  х1(0)=х;  х1(∞)=0.

Необходимо найти оптимальный в смысле критерия (4.10) закон управления uопт(t) для разомкнутой САУ и оптимальный регулятор uопт1) для замкнутой САУ.

Вспомогательный функционал будет иметь следующий вид:

.   (п.4.3)

Уравнение Эйлера-Лагранжа для объекта первого порядка будет:

                   (п.4.4)

Найдем, что:

С учетом этих выражений уравнение (п.4.4) примет вид:

.                             (п.4.4)

Оптимальное значение управляющего воздействия должно обеспечить экстремум критерию (п.4.3). Следовательно, должно выполняться условие, что:

                                         (п.4.5)

или  подставляя в (п.4.5) значение J*  (п.4.3)получим:

Следовательно

                                     (п.4.6)

Определим  из системы уравнений (п.4.2) и (п.4.4) с учетом выражения (п.4.6):

                                 (п.4.7)

Характеристическое  уравнение системы (п.4.7) определяется следующим образом                           det(Ip-A) = p2-B,

где B=.

Следовательно:

.                          (п.4.8)

Решение системы уравнений (п.4.7) будет (положительный корень р1 опускаем, т.к. управление должно быть не расходящимся (устойчивым)):

,                              (п.4.9)

.                         (п.4.10)

Из первого уравнения системы (п.4.7) определим оптимальный закон программного управления:

Подставив в это выражение значения х1 и   получим:

                        (п.4.11)

где с1=

Из выражений (п.4.9) и (п.4.11) получим зависимость uопт1) для замкнутой САУ:

.                    (п.4.12)

Из этого следует, что:

,                             (п.4.13)

где оптимальный коэффициент П-регулятора

.                                   (п.4.14)

Структурная схема полученной САУ  представлена на рис. п.4.3.

Рис. п.4.3  Замкнутая оптимальная по квадратичному интегральному критерию система с П- регулятором, коэффициент которого определяется (п.4.14)

Определим выражение для Копт через параметры объекта. Для этого в (п.4.13) подставим  выражение (п.4.8) для коэффициентов а и b из выражения (п.4.1):

.     (п.4.14)

Из (п.4.14) требования минимизации отклонения выхода одного сигнала за счет увеличения в интегральном критерии коэффициента веса q, и минимизация расхода энергии за счет увеличения коэффициента веса r являются противоречивыми. На практике в зависимости от конкретных условий ищется компромисс.


 

А также другие работы, которые могут Вас заинтересовать

72250. ФИЛОСОФИЯ СЕСТРИНСКОГО ДЕЛА 50.5 KB
  Философия сестринского дела является частью общей философии и представляет собой систему взглядов на взаимоотношения сестры пациента общества и окружающей среды. Необходимость философского осмысления сестринского дела возникла потому что в профессиональном сестринском...
72254. Процессуальное право Республики Казахстан 98 KB
  Цель лекции: сформировать у студентов представление о системе процессуального права его принципах участниках уголовно и гражданско-процессуальных правоотношений и стадиях уголовного и гражданского процесса.
72255. Борьба с коррупцией в Казахстане 66.5 KB
  За правонарушения связанные с коррупцией несут ответственность лица уполномоченные на выполнение государственных функций и лица приравненные к ним. К лицам уполномоченным на выполнение государственных функций относятся: все должностные лица депутаты Парламента...
72256. Уголовное право Республики Казахстан 199 KB
  Уголовное право регулирует общественные отношения возникающие после совершения преступления между государством в лице правоохранительных органов и лицом совершившим преступление. Состав преступления. Понятие стадий преступления.
72257. Основы экологического права Республики Казахстан 150 KB
  Специфика природных объектов как объектов регулирования со стороны экологического права выражается в их естественном характере происхождения и функционирования в их органической взаимосвязи с окружающей природной средой.
72258. Основы финансового права Республики Казахстан 212.5 KB
  Финансовая деятельность государства осуществляется только на основе права каковым является финансовое право. Поэтому можно встретить высказывание согласно которому финансы подразделяются на финансы граждан финансы юридических лиц финансы государственно-территориальных образований...