32240

Синтез оптимального управления путем решения общей задачи Лагранжа

Лекция

Информатика, кибернетика и программирование

2 Эти уравнения получаются из описания динамики объекта управления. Рассмотрим решение общей задачи Лагранжа для объекта второго порядка: .8 Запишем уравнение динамики объекта в фазовых переменных координатах: x1=qзy; .7 Для объекта второго порядка i=12 они будут иметь вид: 4.

Русский

2013-09-04

177 KB

13 чел.

Лекция №4

Синтез оптимального управления путем решения общей задачи Лагранжа

В 1759 году появилась первая работа Лагранжа по вариационному исчислению. Лагранж развил идею Эйлера для случая, когда экстремали xi(t) функционала

                              (4.1)

(см. также (3.1)) должны удовлетворять на ряду с граничными условиями  еще дополнительным связям в виде дифференциальных уравнений:

      (4.2)

Эти уравнения получаются из описания динамики объекта управления.

Задача с дополнительными дифференциальными (или голономными) связями называется общей задачей Лагранжа по определению условного экстремума функционала.

Для решения этой задачи составляется вспомогательная функция:

.  (4.3)

Или в сокращенном виде:

,                    (4.4)

где F – подынтегральная функция критерия (функционала) (4.1) или (3.1),

fi – дифференциальные уравнения связи (4.2),

- некоторые дополнительные функции (множители Лагранжа), подлежащие определению.

На основе вспомогательной функции  составляется  вспомогательный функционал:

    (4.5)

Этот функционал, зависящий от "n” функций xi(t) и от “n” функций , исследуется на безусловный экстремум, так как  благодаря введению функции  все функции хi могут варьироваться независимо. В результате получаем задачу Эйлера.

Для функционала (4.5)  записываем “n” уравнений названных уравнениями Эйлера-Лагранжа:

              (4.6)

или подставляя из(4.4) выражение для , получим:

.    (4.7)

Эти уравнения совместно с уравнениями (4.2) образуют систему из 2n уравнений с 2n неизвестными, т.е. задача имеет решение. При этом постоянные интегрирования определяются из граничных условий.

Рассмотрим решение общей задачи Лагранжа  для объекта второго порядка:

.    (4.8)

Запишем уравнение динамики объекта в фазовых переменных (координатах):

x1=qз-y;  .

Исходя из  (4.8) получаем:

,              (4.9)

где а21=.

Граничные условия:

x1(tн)=х; х2(tк)=х=0 (y=qз); х1(tк)=х=0;  x2(tк)=х=0.

Задан квадратичный интегральный критерий оптимальности:

           (4.10)

Требуется определить оптимальный в смысле критерия (4.10) закон изменения управляющего воздействия uопт(t), при котором объект из начального состояния х, х переводится в конечное состояние х, х (оптимальное программное управление) и оптимальный регулятор uопт1, х2) для замкнутой САУ.

Принимая во внимание (4.1) и (4.9) запишем выражения для вспомогательного функционала:

.    (4.11)

Следующим этапом является получение системы уравнений Эйлера-Лагранжа (4.7)

Для объекта второго порядка (i=1,2) они будут иметь вид:

         (4.12)

Определим, что:

Очевидно, что:

.

Аналогично:

Подставляя значения частных производных в уравнения  (4.12) получим:

                         (4.13)

Оптимальное значение управляющего воздействия должно доставлять минимальное значение функционалам J и J*. Поэтому должно выполняться условие, что

                           (4.14)

Подставляя в (4.14) выражение (4.11), получим:

                                     (4.15)

Следовательно

                                                       (4.16)

Таким образом, чтобы определить оптимальный закон управления uопт(t),  нужно определить из системы дифференциальных уравнений (4.14) и уравнений динамики объекта (4.9) выражение для  с учетом выражения (4.16) получим:

                                   (4.17)

Характеристическое уравнение системы (4.17):

р4 - 2Вр2+с=0,                                                      (4.18)

где В=,     

Корни уравнения (4.18) будут:

            (4.19)

Общим решением уравнения (4.17) будет:

.                  (4.20)

Из начальных условий следует, что слагаемые в (4.20) с положительными корнями р1 и р3  равны нулю, т.е. с1=0 и с3=0. Таким образом:

                                       (4.21)

Аналогично:

                                      (4.22)

Значения постоянных интегрирования с2, с46, с8 – определяются из граничных условий. Подставив (4.22) в (4.16) получим закон изменения  управляющего воздействия для оптимального программного регулятора:

,                            (4.33)

где ;.

Для определения закона оптимального  управления для замкнутой САУ необходимо найти зависимость управляющего воздействия от переменных состояний объекта  uопт(x1,x2). Для этого выразим производную  через переменные состояния объекта.  Для этого возьмем первую и вторую производные от х1(t), определяемую выражением (4.21). В результате получим, что:

                  (4.24)

Подставив выражение (4.24) во второе уравнение системы (4.17) получим:

uопт=-к1х12х2                                               (4.25)

где к12р421; к22422                                                        (4.26)

Значения р2 и р4 определяются выражением (4.19).

Таким образом получаем замкнутую систему с ПД регулятором, коэффициенты которого определяются соотношением (4.26) (см.рис. 4.1)

Рис. 4.1. Замкнутая система управления с оптимальным по критерию (4.10)

                   с ПД регулятором.

Если представить модель объекта управления в переменных состояния (4.9), то структурная схема САУ будет иметь вид, представленный на рис. 4.2. В этом случае ПД-регулятор превращается в регулятор состояния объекта.

Рис. 4.2 Замкнутая система управления с оптимальным по критерию (4.10)

                  с регулятором состояния.

Оба регулятора дают один и тот же результат.  Схема с регулятором состояния имеет то преимущество, что не надо производить операцию дифференцирования. Но применение этой схемы возможно, если х2- измеряемое, а иначе надо использовать наблюдатель состояния объекта.

Пример.

Объект первого порядка

                        (п.4.1)

Запишем (п.4.1) в виде дифференциального уравнения относительно х.

,                               (п.4.2)

где .

Граничные условия:  х1(0)=х;  х1(∞)=0.

Необходимо найти оптимальный в смысле критерия (4.10) закон управления uопт(t) для разомкнутой САУ и оптимальный регулятор uопт1) для замкнутой САУ.

Вспомогательный функционал будет иметь следующий вид:

.   (п.4.3)

Уравнение Эйлера-Лагранжа для объекта первого порядка будет:

                   (п.4.4)

Найдем, что:

С учетом этих выражений уравнение (п.4.4) примет вид:

.                             (п.4.4)

Оптимальное значение управляющего воздействия должно обеспечить экстремум критерию (п.4.3). Следовательно, должно выполняться условие, что:

                                         (п.4.5)

или  подставляя в (п.4.5) значение J*  (п.4.3)получим:

Следовательно

                                     (п.4.6)

Определим  из системы уравнений (п.4.2) и (п.4.4) с учетом выражения (п.4.6):

                                 (п.4.7)

Характеристическое  уравнение системы (п.4.7) определяется следующим образом                           det(Ip-A) = p2-B,

где B=.

Следовательно:

.                          (п.4.8)

Решение системы уравнений (п.4.7) будет (положительный корень р1 опускаем, т.к. управление должно быть не расходящимся (устойчивым)):

,                              (п.4.9)

.                         (п.4.10)

Из первого уравнения системы (п.4.7) определим оптимальный закон программного управления:

Подставив в это выражение значения х1 и   получим:

                        (п.4.11)

где с1=

Из выражений (п.4.9) и (п.4.11) получим зависимость uопт1) для замкнутой САУ:

.                    (п.4.12)

Из этого следует, что:

,                             (п.4.13)

где оптимальный коэффициент П-регулятора

.                                   (п.4.14)

Структурная схема полученной САУ  представлена на рис. п.4.3.

Рис. п.4.3  Замкнутая оптимальная по квадратичному интегральному критерию система с П- регулятором, коэффициент которого определяется (п.4.14)

Определим выражение для Копт через параметры объекта. Для этого в (п.4.13) подставим  выражение (п.4.8) для коэффициентов а и b из выражения (п.4.1):

.     (п.4.14)

Из (п.4.14) требования минимизации отклонения выхода одного сигнала за счет увеличения в интегральном критерии коэффициента веса q, и минимизация расхода энергии за счет увеличения коэффициента веса r являются противоречивыми. На практике в зависимости от конкретных условий ищется компромисс.


 

А также другие работы, которые могут Вас заинтересовать

79394. Модель строения твёрдых тел. Механические свойства твёрдых тел. Упругость, пластичность, хрупкость. Диаграмма растяжения 26.38 KB
  Причиной этих свойств во многом являются силы связи между молекулами материала. Под твердостью понимают сопротивление материала которое он создает при вдавливании или царапании его поверхности другим телом. Оценка твердости материала проводится с помощью простого испытания на твердость методом царапания.
79395. Кристаллические и аморфные тела. Типы кристаллических решёток. Жидкие кристаллы 177.63 KB
  По своим физическим свойствам и молекулярной структуре твердые тела разделяются на два класса аморфные и кристаллические тела. Молекулы и атомы в изотропных твердых телах располагаются хаотично образуя лишь небольшие локальные группы содержащие несколько частиц ближний порядок.
79396. З чого складається комп’ютер 143.5 KB
  Мета уроку: Познайомити учнів з основними складовими частинами комп’ютера, їх призначенням. Скласти модель комп’ютера. Повторити техніку безпеки при роботі з комп’ютером; Виховувати дбайливе відношення до устаткування кабінету;
79397. Поняття оригамі. Відомості з історії оригамі 813.5 KB
  Мета уроку: Ознайомити із поняттям оригамі, збагатити знаннями про історію його виникнення, ознайомити із видами оригамі та способами його створення, навчити виконувати модульне оригамі. Розвивати увагу, мислення, пам’ять, уяву, точність вимірювань при виконанні модулів, фантазію та креативність.
79398. Вустами немовляти 188 KB
  В цій грі приймає участь весь клас. Вона проходить у вигляді змагань: три групи учасників по 8 чоловік – 4 гри по 2 людини. Гра перевіряє вміння учнів виконувати математичні дії, аналізувати, порівнювати, підмічати закономірності, сприяє прищеплюванню зацікавленню учнів до предмету.
79400. Основные направления психологического анализа личности 45.05 KB
  Психоанализ основывается на идее о том что поведение человека определяется не только и не столько его сознанием сколько бессознательным к которому относятся те желания влечения переживания в которых человек не может себе признаться и которые поэтому либо не допускаются до сознания либо вытесняются из него как бы исчезают забываются но в реальности остаются в душевной жизни и стремятся к реализации побуждая человека к тем или иным поступкам проявляясь в искаженном виде. Почему же возникает эта своеобразная цензура запрещающая...
79401. Динамические тенденции личности. Проблема направленности личности. Направленности личности по Ломову 31.47 KB
  Проблема направленности личности. Направленности личности по Ломову Динамические тенденции личности. Поведение человека во многом определяется имеющимися у него представлениями о долге обязанностях о нравственных нормах или другими словами идеалами личности.
79402. Проблема задатков, способностей, одаренности в психологии личности 24.98 KB
  В современной психологии Способности система свойств личности формирующаяся на основе задатков и определяющая успешность выполнения определенных видов деятельности а также овладение знаниями и навыками. По критерию происхождения различают природные и социальные способности. Природные способности обусловлены врожденными свойствами психических процессов.