32438

CИCТЕМЫ СЛУЧАЙНЫХ ВЕЛИЧИН

Лекция

Математика и математический анализ

CИCТЕМЫ СЛУЧАЙНЫХ ВЕЛИЧИН. РАСПРЕДЕЛЕНИЕ СИСТЕМЫ СЛУЧАЙНЫХ ВЕЛИЧИН. Пусть Х = Х1 Х2Хn совокупность или система случайных величин. Функцией распределения системы случайных величин называется вероятность совместного выполнения неравенств k = 1 2 .

Русский

2013-09-04

144.5 KB

17 чел.

Лекция 7.

Глава 3. CИCТЕМЫ СЛУЧАЙНЫХ ВЕЛИЧИН.

$1. РАСПРЕДЕЛЕНИЕ СИСТЕМЫ СЛУЧАЙНЫХ ВЕЛИЧИН.

Пусть Х = (Х1Х2,…,Хn) – совокупность (или система) случайных величин.

Функцией распределения системы случайных величин называется вероятность совместного выполнения неравенств ,   ,   k = 1, 2, ..., n.

Свойства функции распределения аналогичны свойствам функции распределения одномерной случайной величины. Например, для системы двух случайных величин X и Y:

1) F(х, у) – неубывающая функция своих аргументов;

2) ;

3) , где F1(x), F2(y) – функции распределения компонент X и Y;

4) .

 Пример 1. Бросают две игральные кости. Cлучайная величина X принимает значение 1, если сумма выпавших очков четна, и равняется 0, если сумма нечетна. Cлучайная величина Y принимает значения 1 или 0, если произведение выпавших очков четно или нечетно. Совместное распределение (X,Y) можно задать в виде таблицы.  

   X

    Y

0

1

Распределение Y

0

1

0

1/2

¼

¼

1/4

3/4

Распределение X

1/2

½

Функция распределения вектора (X,Y)

Функции распределения компонент:   

Если функция распределения F, y) системы случайных величин (X,Y)  дифференцируема, то ее вторую смешанную частную производную называют плотностью распределения ,  вектор (X, Y) в этом случае называют непрерывным случайным вектором. Отсюда, .

Cвойства плотности распределения непрерывного случайного вектора вытекают из свойств функции распределения:

1) ;

2) .

3) т.к. , то .

Замечание. Чтобы найти вероятность попадания непрерывного двумерного случайного вектора в область D, надо аналогично одномерному случаю проинтегрировать двумерную плотность распределения по области D:

.

Пример 2. Распределение двумерной случайной величины задается плотностью

     (распределение Коши).

Найдем функцию распределения F(xy):

Определим вероятность попадания случайной точки (X, Y) в квадрат R.

Плотность компоненты X

, .

$2. ЧИСЛОВЫЕ ХАРАКТЕРИСТИКИ СИСТЕМЫ СЛУЧАЙНЫХ ВЕЛИЧИН.

Моментом порядка (k,s) cистемы (X, Y) называется математическое ожидание произведения

.

Для дискретных случайных величин

если ряд сходится абсолютно.

Для непрерывных случайных величин , где

- плотность распределения системы (X, Y), если интеграл существует.

Пример 3. Моментом порядка (1, 0) является математическое ожидание случайной величины X, а моментом порядка (0, 1) – математическое ожидание случайной величины Y. Cовокупность (MX, MY) геометрически представляет собой координаты средней точки на плоскости, вокруг которой происходит рассеивание вектора (X, Y).

Центральным моментом порядка (k, s) cистемы (X, Y) называется математическое ожидание произведения

.

Пример 4. Центральным моментом порядка (2, 0) является дисперсия X, а центральным моментом порядка (0, 2) – дисперсия Y. DX и DY характеризуют рассеивание вектора (X, Y) в направлении осей ОХ и ОY. 

Момент порядка (1,1)  называется ковариацией случайных величин X и Y.

Утверждение 1. Ковариацию можно считать по формуле

Доказательство:

      

Утверждение 2.  Дисперсия суммы случайных величин X и Y равна

.

Доказательство.

Коэффициентом корреляции случайных величин X и Y называется , где  – средние квадратические отклонения случайных величин X и Y.

Пример 5.  Посчитаем ковариацию и коэффициент корреляции случайных величин Х и Y из примера 1. Введем случайную величину Z=X*Y.

   Z    0     1                 MX= 1/2, DX=1/4, MY=3/4, DY=3/16, MZ=M(X*Y)=1/4;

   Р   3/4   1/4              cov(X,Y)=M(XY)-MX*MY= -1/8;

                                   corr(X,Y) = cov (X,Y)/(xy) = –1/().

Дисперсия суммы случайных величин X иY =

= 1/4+3/16+2*(-1/8) = 3/16

$3. НОРМАЛЬНОЕ РАСПРЕДЕЛЕНИЕ НА ПЛОСКОСТИ.

     Нормальное распределение на плоскости – это нормальное распределение для системы двух случайных величин X и Y.

Нормальное распределение на плоскости задается плотностью

.

Распределение зависит от пяти параметров: . Выясним их смысл. Для этого найдем плотности компонент X и Y:

;     

Cлучайные величины X и Y имеют нормальное распределение c параметрами  и  cоответственно.  Cледовательно, .

Посчитаем ковариацию компонент X и Y.

Отсюда следует, что параметр r совпадает с коэффициентом корреляции X и Y:

.

Геометрически плотность двумерного нормального закона представляет собой “холм”, вершина которого находится над точкой (). В сечении  поверхности плотности плоскостями, параллельными оси , получаются кривые, подобные гауссовым кривым. В сечениях плоскостями, параллельными плоскости XOY, получаются эллипсы. Уравнения эллипсов: . Эти эллипсы называются эллипсами рассеивания, а оси этих эллипсов (общие для всех эллипсов) называются главными осями рассеивания ( и ).

PAGE  23


 

А также другие работы, которые могут Вас заинтересовать

66771. Обработка пространственной информации об объектах речной сети для определения характеристик подтопления промышленных объектов при паводках 11.32 MB
  Целью работы является разработка методов, алгоритмов и программного обеспечения для определения характеристик подтопления промышленных объектов в паводковый период на основе совместной обработки пространственной информации об объектах речной сети и промышленности...
66775. Формирование и функционирование организационных структур управления субъектов предпринимательской деятельности современной России 871 KB
  Формирование и развитие организационных структур управления субъектов предпринимательской деятельности. Понятие и основная терминология организационной структуры управления субъекта предпринимательской деятельности. Понятие организационной структуры управления субъекта предпринимательской деятельности...
66776. ВЗАИМОСВЯЗЬ МОТИВАЦИОННО-СМЫСЛОВОЙ СФЕРЫ С СОСТОЯНИЕМ АДАПТАЦИИ ЛИЧНОСТИ В ПОСТЭКСТРЕМАЛЬНЫХ УСЛОВИЯХ 684 KB
  Многочисленные исследования, наблюдения, эксперименты не только не исчерпали проблему адаптации, а, напротив, показали ее глубину и многомерность. В последнее время предметом исследования психологов все чаще становится проблема адаптации личности в экстремальных и постэкстремальных условиях.
66777. АЛГОРИТМЫ И ПРОГРАММНЫЕ СРЕДСТВА ИДЕНТИФИКАЦИИ НЕЧЕТКИХ МОДЕЛЕЙ НА ОСНОВЕ ГИБРИДНЫХ МЕТОДОВ 4.41 MB
  Такой алгоритм исключает недостаток методов основанных на производных неспособность проходить локальные минимумы и недостаток генетического алгоритма не всегда точное попадание в глобальный оптимум. Трехэтапная идентификация параметров сначала многократным запуском алгоритма имитации отжига генерируется...
66778. Роль управленческого фактора в процессе взаимодействия коммерческих банков и их клиентов 439.5 KB
  Взаимодействие коммерческих банков и их клиентов промышленных предприятий осуществляется в различных организационных формах от создания финансово-промышленных групп на основе слияния промышленного и банковского капитала и до предельно формализованных контактов ограничивающихся привычными финансовыми...
66779. ТЕХНОЛОГИИ ДИСТАНЦИОННОГО ОБУЧЕНИЯ 149 KB
  Преимущества дистанционного обучения: Возможность заниматься в удобное для себя время в удобном месте и темпе. Но в этом таится и сложность дистанционные курсы в основе которых лежат новые технологии обучения не вписываются в структуру и программы традиционного обучения.