32441

ЗАКОН БОЛЬШИХ ЧИСЕЛ

Лекция

Математика и математический анализ

ЗАКОН БОЛЬШИХ ЧИСЕЛ. Закон больших чисел позволяет установить новую точку зрения на вероятность случайных событий и математическое ожидание случайной величины. Cуть закона больших чисел состоит в том что конкретные особенности каждого отдельного случайного явления почти не сказываются на среднем результате множества таких явлений случайные отклонения от среднего неизбежные в каждом отдельном случае в массе таких случаев почти всегда взаимно погашаются и выравниваются. Для доказательства закона больших чисел нам потребуется Лемма...

Русский

2013-09-04

83 KB

12 чел.

Лекция 10.

$2. ЗАКОН БОЛЬШИХ ЧИСЕЛ.

Закон больших чисел позволяет установить новую точку зрения на вероятность случайных событий и математическое ожидание случайной величины. Cуть закона больших чисел состоит в том, что конкретные особенности каждого отдельного случайного явления почти не сказываются на среднем результате множества таких явлений, случайные отклонения от среднего, неизбежные в каждом отдельном случае, в массе таких случаев почти всегда взаимно погашаются и выравниваются.

Для доказательства закона больших чисел нам потребуется

Лемма (неравенство Чебышева). Если существует M(X2), то для произвольного t > 0

В частности, если существует M(X), то

Доказательство. Пусть X – дискретная случайная величина.

где  – значения случайной величины X.

Если X –непрерывная случайная величина с плотностью распределения f(x), то

Поделив эти неравенства на t2, получим первое утверждение леммы.

Если первое неравенство леммы применить к случайной величине X – MX, то получится второе неравенство.

Теорема 2. Закон больших чисел в форме Чебышева.

Пусть - последовательность взаимно-независимых одинаково распределенных случайных величин. Если m = M(Xk) и  существуют, то для любого  > 0 при

Иначе говоря, вероятность того, что среднее случайных величин X1X2,…., Xn будет отличаться от математического ожидания меньше, чем на произвольно заданное , cтремится к 1.  

Доказательство.  Т.к. X1X2,…, Xn – взаимно-независимы,

Применим неравенство Чебышева к среднему

При  правая часть стремится к 0, что и доказывает теорему.

Замечание. C помощью неравенства Чебышева также легко доказать, что если задана бесконечная последовательность случайных величин
X1X2,…, Xn,…(Xi и Xj независимы для любых i и j),  то для любого  > 0 при

     (теорема Маркова) .

Пример 4.  Петербургская  игра.

Игрок платит взнос А рублей за участие в одной партии, состоящей из m подбрасываний монеты. Если первый раз герб выпадет при r-ом подбрасывании, r = 1, 2,…, m, игрок получает за партию 2r рублей. Если m раз выпадает решка, игрок ничего не получает. При каком взносе А игру можно считать «неблагоприятной» для игорного заведения?

Пусть Xk – выигрыш в k-ой партии, k=1, 2,…  .  

Cредний выигрыш в k-ой партии  и дисперсия выигрыша в k-ой партии  конечна.

Выигрыш от участия в n партиях составит , а взнос за n партий – n*m рублей.

Согласно теореме 2,

т.е.

То есть почти всегда прибыль организаторов игры при взносе А=m мало отличается от нуля (в ту и другую сторону), если число сыгранных партий n велико.

Этот результат не зависит от того, постоянно число подбрасываний m в каждой партии или может меняться по желанию игроков. Согласно  замечанию к теореме 2,  при возрастании n суммарный выигрыш в n партиях стремится по вероятности к суммарному взносу за n партий, если взнос за k-ую партию равен числу подбрасываний монеты.

Таким образом, закон больших чисел позволяет в большинстве случаев расценивать математическое ожидание случайной величины, как среднее наблюдаемых значений случайной величины при большом числе реализаций.

Практический подход к вероятности случайного события обуславливает следствие из закона больших чисел

Теорема 3. Теорема Бернулли.

Частота наступления события А в серии из n независимых одинаковых испытаний (k/n) сходится по вероятности к вероятности события А в каждом испытании (р) при

Доказательство. Пусть Xi – число наступлений события А в i-том испытании.

Тогда число наступлений события А в n опытах

и частота наступления события А

Согласно теореме 2,

 

Замечание. Если вероятности наступления события А в серии из n испытаний меняются от опыта к опыту и равняются pi, i = 1, 2,..., n, то при  частота события А сходится по вероятности к среднему арифметическому вероятностей  pi . Это сразу следует из замечания к теореме 2.

Пример 5. Появление пары (7,7) среди 100 пар случайных цифр должно подчиняться биномиальному распределению с n=100 и p=0,01. Еcли рассмотреть 100 групп по 100 пар, то Nk – число групп, в которых  комбинация (7,7) встречается ровно k раз. Полученные частоты Nk/100 хорошо согласуются с теоретическими вероятностями, хотя число рассматриваемых групп 100 не является очень большим.

K

P(X = k)

Nk

0

1

2

3

4

5

6

7

8

9

0,366032

0,369730

0,184865

0,060999

0,014942

0,002898

0,000463

0,000063

0,000007

0,000001

41

34

16

8

0

1

0

0

0

0

                                                                                               

Изложение закона больших чисел завершает предлагаемый курс лекций по теории вероятностей и вместе с тем непосредственно подводит к изучению новой дисциплины – математической статистики. Различные формы закона больших чисел являются одним из основных инструментов, используемых в этой прикладной математической науке.

35

PAGE  35


 

А также другие работы, которые могут Вас заинтересовать

47287. Алгоритм пересчета балансов вершин выделенного пути и его особенности 76.6 KB
  После добавления нового элемента необходимо обновить коэффициенты сбалансированности родительских узлов Если любой родительский узел принял значение -2 или 2, то необходимо выполнить балансировку поддерева путем поворота
47288. Процедура построения почти полного дерева поиска и ее особенности 82.69 KB
  Бинарное дерево-это конечное множество элементов, которое либо пусто, либо содержит один элемент, называемый корнем дерева, а остальные элементы множества делятся на два непересекающихся подмножества, каждое из которых само является бинарным деревом.
47289. Туберкулез кожи. Лепра 249.5 KB
  Туберкулезные поражения кожи – группа клинически и морфологически различных заболеваний, обусловленных внедрением в кожу микобактерий туберкулеза (палочки Коха)
47292. Качество и его оценка 825.07 KB
  Качество – это совокупность свойств продукции, обусловливающих ее пригодность удовлетворять потребности в соответствии с ее назначением (ГОСТ 15467-79)
47293. Автомобильные парки 11.81 MB
  Опыт эксплуатации, как обычных бортовых автомобилей, так и автопоездов, состоящих из автомобиля-тягача и прицепа (прицепов) или полуприцепа позволил определить преимущества автопоездов
47294. Вивчення виробничо-господарської діяльності КАТП №1728 366.67 KB
  Метою практики є вивчення виробничо-господарської діяльності КАТП №1728, технологічних процесів організації автомобільних перевезень, організації й керування перевезеннями, закріплення, поглиблене вивчання й розширення знань по теоретичних дисциплінах, які вивчалися в університеті, придбання професійної компетенції майбутніх фахівців, збір необхідної інформації для дипломної роботи, вивчення науково-дослідницької роботи кафедри Автомобілів, автомобільного господарства і технології металів.
47295. Видеомонтаж. Обработка видео на компьютере 99.5 KB
  Самым первым методом передачи видеосигнала является аналоговый метод. Одним из первых видео форматов на основе этого принципа стал композитный видеосигнал. Композитное аналоговое видео комбинирует все видео компоненты (яркость, цвет, синхронизацию и т. п.) в один сигнал