32443

ГЕОМЕТРИЧЕСКИЕ ВЕРОЯТНОСТИ

Лекция

Математика и математический анализ

Cогласно классическому определению в опытах с конечным числом равновозможных исходов вероятность события А это доля исходов которые приводят к наступлению события А в общем количестве исходов. Определять вероятность как долю благоприятных исходов можно и в опытах с бесконечным числом исходов. Какова вероятность что пассажир пришедший на платформу отправится с нее не позже чем через 15 минуты Пространство элементарных исходов состоит из бесконечного множества точек отрезка [АВ] см. Пространство элементарных исходов...

Русский

2013-09-04

186 KB

10 чел.

Лекция 2.

$5. ГЕОМЕТРИЧЕСКИЕ ВЕРОЯТНОСТИ.

Cогласно классическому определению, в опытах с конечным числом равновозможных  исходов вероятность события А - это «доля» исходов, которые приводят к наступлению события А в общем количестве исходов. Определять вероятность как «долю» благоприятных исходов можно и в опытах с бесконечным числом исходов. Рассмотрим примеры подсчета так называемых «геометрических» вероятностей.

Пример 4.  Поезда в метро отправляются со станции с интервалом в 4 минуты. Какова вероятность, что пассажир, пришедший на платформу, отправится с нее не позже, чем через 1,5 минуты?

Пространство элементарных исходов состоит  из бесконечного множества точек отрезка [А,В] (см. рисунок), так как пассажир может появиться на платформе в любой момент между отправлениями поездов. Однако отправиться не позже, чем через полторы минуты, он сможет, если время его прихода попадет на отрезок [C, В]. Долей точек отрезка [C, В] в отрезке [А, В] можно считать отношение длин этих отрезков. Таким образом, искомая вероятность Р(А) = |В – C| / |B – А|  = 1,5/4 = = 3/8.

Пример 5.  Два человека независимо друг от друга  решили отдохнуть в любую неделю февраля на одном и том же горнолыжном курорте. Какова вероятность, что они там  встретятся?

Введем двумерную декартову систему координат  XOY. Пусть пространство элементарных событий Ω={x,y}, , где x – время (в сутках) приезда на курорт первого отдыхающего, а y -  второго.

Графически пространству Ω соответствует квадрат со стороной, равной 21. Чтобы отдыхающие встретились, разность между х и y должна быть не более 7 суток, т.е. |x - y 7 или – 7  у – х  7. Графически этому событию соответствует фигура, координаты точек которой удовлетворяют неравенству

 x – 7  y  x + 7. Искомая вероятность равна отношению площади заштрихованной фигуры  к площади всего квадрата:

Пример 6. Задача Бюффона. На плоскость, разлинованную линиями, параллельными оси ОХ и отстоящими друг от друга на расстояние L,  наугад бросают иголку длины l (l < L). Какова вероятность того, что иголка пересечет одну из линий?

Будем считать иголку отрезком длины l. Пусть  α  -  угол наклона этого отрезка к оси ОХ, ρ – расстояние от середины иглы до ближайшей линии, 0  α < π, 0  ρ  L/2. Игла пересечет одну из линий тогда и только тогда, когда ρ  l/2*(sin α).

Введем двумерную систему координат 0. Пространство элементарных исходов представляет собой прямоугольник, cоставленный из точек {(), α < π, 0  ρ  L/2}.

Благоприятные исходы – это множество точек этого прямоугольника, которые расположены не выше синусоиды. Доля таких точек в прямоугольнике может быть определена как отношение площади под синусоидой к площади прямоугольника. Следовательно,

$6. АКСИОМАТИЧЕСКОЕ ПОСТРОЕНИЕ ТЕОРИИ ВЕРОЯТНОСТЕЙ.

    В случае с геометрическими вероятностями пространство элементарных исходов не конечно и даже не счетно, а значит невозможно применять классическую формулу для подсчета вероятностей. Проблема  определения вероятностей, когда классическая формула неприменима, была решена  Андреем Николаевичем Колмогоровым, который в 1929 году сформулировал аксиоматику теории вероятностей. Работы Колмогорова в области теории вероятностей считаются самым крупным вкладом в математическую науку в ХХ столетии. В чем эта аксиоматика состоит?  

Пусть пространство элементарных событий  есть произвольное множество, и пусть  - некоторая система его подмножеств.

называется алгеброй, если

1) ;

2) для любых множеств B,C принадлежащих ,  так же принадлежит .

3) если , то и  .

Из этих свойств также следует, что для любых множеств , принадлежащих , их пересечение , (т.к.).

Таким образом, алгебра – это класс множеств, замкнутый относительно  операций дополнения, объединения и пересечения.

Замечание. Алгебра  может быть замкнута не только относительно конечного числа этих операций, но также их счетного числа. В этом случае она называется    - алгеброй.

Если задано множество и какая-нибудь алгебра его подмножеств , то говорят, что задано измеримое пространство (, ).

Пример 7. В примере 4 предыдущего параграфа пространство состоит из точек отрезка [АВ]. Совокупность множеств { , , [CВ], [АC)} образует алгебру .

Для того чтобы формализовать какую-либо вероятностную задачу, надо соответствующему эксперименту приписать измеримое пространство (, ).
означает множество элементарных исходов эксперимента, алгебра  выделяет класс событий. Все остальные подмножества , которые не вошли в алгебру , cобытиями в данном эксперименте не являются.

Пусть (, ) - измеримое пространство. Вероятностью на измеримом  пространстве (, ) называется числовая функция Р, определенная на множествах из  и  удовлетворяющая трем аксиомам:

1) для любого множества:;

2) ;

3) для любых двух событий В и С, принадлежащих алгебре  и таких, что : .

Замечание. Если  является - алгеброй, третье утверждение должно выполняться не только для конечного, но также для любого счетного объединения ее подмножеств. В этом случае третья аксиома называется аксиомой счетной аддитивности.

Тройка (, ,  называется вероятностным пространством.

Пример 8. В примере 7 вероятность любого события из алгебры положим равной длине соответствующего промежутка, деленной на длину отрезка [А,В]. Все аксиомы вероятности будут выполнены.

9


 

А также другие работы, которые могут Вас заинтересовать

2774. Затухающие электрические колебания в колебательном контуре 181.5 KB
  Затухающие электрические колебания в колебательном контуре Приборы и принадлежности: лабораторная панель «Затухающие колебания», источник постоянного тока, осциллограф, магазин сопротивлений. Введение. Замкнутая электрическая цепь, состоящая ...
2775. Исследование и применение зеркального гальванометра 236 KB
  Исследование и применение зеркального гальванометра Приборы и принадлежности: гальванометр М17, лабораторная панель, длинный соленоид, катушка на вращающейся подставке. Введение. Гальванометр – это электроизмерительный прибор высокой чувствител...
2776. Измерение индукции магнитного поля электромагнита 57 KB
  Измерение индукции магнитного поля электромагнита Приборы и принадлежности: электромагнит, весы Ампера, разновес, два стабилизированных источника постоянного тока. Введение. Согласно закону Ампера на элемент тока  в магнитном поле действует сил...
2777. Изучение эффекта холла в полупроводниках 138.5 KB
  Изучение эффекта холла в полупроводниках Приборы и принадлежности: датчик Холла, электромагнит, два источника питания постоянного тока, милливеберметр, миллиамперметр, цифровой вольтметр. Введение. Одним из наиболее интересных гальваномагнитных явле...
2778. Определение точки кюри ферромагнетиков 119.5 KB
  Определение точки кюри ферромагнетиков Приборы и принадлежности: электрические печи с ферромагнитными образцами, автотрансформатор РНШ (регулятор напряжения школьный), амперметр, термопара, два милливольтметра. Введение. Основные особенности феррома...
2779. Определение магнитного момента протона 275.5 KB
  Определение магнитного момента протона Приборы и принадлежности, электромагнит ЭМ-1, источник питания постоянного тока Б5-49, измеритель магнитной индукции Ш1-9, частотомер Ч3-44, амперметр постоянного тока. Введение. Магнитное поле в веществе созда...
2780. Изучение компенсационного метода измерений 37.08 KB
  Изучение компенсационного метода измерений. Цель работы. Ознакомиться с компенсационным методом измерений. Произвести измерения с помощью потенциометра ПП-63. Компенсационный метод применяется для точного измерения ЭДС, напряжения и потенциала.
2781. Электростатическое моделирование электростатического поля 48 KB
  Цель работы: изучить свойства электростатического поля, изучить метод электростатического моделирования электростатического поля. Теория. Суммарный заряд электрически изолированной системы не может изменяться. Это закон сохранения электрического зар...
2782. Изучение резонанса токов и напряжений 245 KB
  Изучение резонанса токов и напряжений Приборы и принадлежности. Реостат, катушка с выдвигаемым железным сердечником, магазин емкостей, амперметр, вольтметр. Резонанс напряжений. Рассмотрим электрическую цепь, состоящую из соединенных последовательно...