32444

УСЛОВНЫЕ ВЕРОЯТНОСТИ

Лекция

Математика и математический анализ

Если в одном эксперименте могут произойти события А и В то возникает вопрос как влияет возможность наступления события А на наступление события В. Если вероятность события А можно рассматривать как долю элементарных исходов приводящих к наступлению события А среди всех элементарных исходов пространства то условную вероятность события А при условии что событие В произошло можно рассматривать как долю исходов приводящих к событию А во множестве элементарных исходов образующих событие В. Условная...

Русский

2013-09-04

81 KB

6 чел.

   Лекция 3.

$7. УСЛОВНЫЕ ВЕРОЯТНОСТИ.

   Если в одном эксперименте могут произойти события А и В, то возникает вопрос, как влияет возможность наступления события А на наступление события В. Характеристикой связи событий является условная вероятность.

   Если вероятность события А можно рассматривать как долю элементарных исходов, приводящих к наступлению события А, среди всех элементарных исходов пространства      , то условную вероятность события А ( при условии, что событие В произошло) можно рассматривать как долю исходов, приводящих к событию А во множестве элементарных исходов, образующих событие В.

   Условная вероятность события А (при условии, что событие В произошло)             определяется по формуле:  Р(А/В)= P(AB)/P(B), если Р(В) > 0.

Величину Р(А/B) можно cчитать вероятностью события А в новых условиях ( в условиях наступления события В).

Пример 9. Первая цифра телефонного номера, записанного в телефонной книжке, стерлась.

Если владелец книжки наберет любую цифру вместо стершейся, то может произойти событие А: «владелец книжки дозвонится с первого раза”. Р(А)=1/9.

Пусть стало известно, что телефонные номера в этом районе начинаются с цифр «1» и «2». Событие В: «первая цифра телефонного номера 1 или 2», Р(B)=2/9.

Р(АВ)=1/9, т.к. cобытия А и B произойдут одновременно, если владелец книжки наберет верную цифру. Тогда  Р(А/В)=Р(АВ)/Р(В)= (1/9)/(2/9)=1/2.   

    Условные вероятности обладают всеми свойствами, присущими обычным вероятностям:

1) 0  P(А/B)  1;

2) если В ведет к наступлению события А (ВА), то Р(А/В)=1;

3) если В исключает возможность наступления А, т.е. АВ= , то Р(А/B)=0;

4) если событие А есть  объединение непересекающихся событий C и D :, то .

$8. ВЕРОЯТНОСТЬ СУММЫ И ПРОИЗВЕДЕНИЯ СОБЫТИЙ.

Утверждение 1 (теорема сложения).  P(AB)=P(A)+P(B)-P(AB).

Доказательство. Cобытие (АВ) можно представить как объединение трех непересекающихся событий: A\B, B\A и АВ. Тогда по третьей аксиоме вероятностей

Р(АВ)=Р(А\В)+Р(В\А)+Р(АВ)= Р(А)+Р(В\А)=Р(А)+Р(В)-Р(АВ).

Утверждение 2.  Вероятность объединения n (n > 2) событий равна

– формула Буля.

Доказательство. При n=2 формула доказана в Утверждении 1. Для n > 2 она проверяется по индукции на основании формулы

Утверждение 3 (теорема умножения). Р(АВ)=Р(В)*Р(А/B)=Р(А)*Р(В/А).

Доказательство cразу следует из определения условной вероятности.

Утверждение 4. Формула вероятности пересечения n событий (n > 2) получается из формулы Буля, если операции «объединения» и «пересечения » поменять местами.

Доказательство следует из формул двойственности:  где  – некоторое множество индексов.

$9. ЗАВИСИМЫЕ И НЕЗАВИСИМЫЕ СОБЫТИЯ.

    Cобытия А и В называются независимыми, если наступление события В не влияет на возможность наступления А, т.е. условная вероятность  Р(А/В) равна безусловной вероятности события А: Р(А/В)=Р(А).

Пример 10.  Из колоды в 36 карт наугад вынимают карту. Cобытие А: «эта карта – дама», cобытие В: «эта карта пиковой масти». Зависимы ли эти события?

Р(А)=4/36=1/9, Р(А/B)=Р(АВ)/Р(В)=(1/36)/(9/36)=1/9. Cобытия независимы.

     Приведем свойства независимых событий.

Утверждение 5. Cобытия А и В независимы тогда и только тогда, когда вероятность их пересечения равна произведению вероятностей: Р(АВ)=Р(А)*Р(В).

Доказательство. Необходимость. Р(АВ)=Р(В)*Р(А/B)=Р(В)*Р(А).

Достаточность. Р(А)= Р(А)*Р(В)/Р(В)=Р(АВ)/Р(В)=Р(А/В).

     Из этого утверждения также следует, что события А и В зависимы или независимы одновременно.

Утверждение 6. Если события А и В независимы, то события  и В тоже независимы.

Для доказательства используем третью аксиому вероятности:

Пример 11. Подбрасывают две игральные кости. Какова вероятность, что сумма выпавших очков четна?

Cобытие А1– «четное число очков на первой кости»,  A2 –“ на второй», А –“ сумма выпавших очков четна». . Cобытия несовместны, поэтому Р(А)= Так как А1  и А2  независимы,

     Если рассмотреть n (n > 2) cобытий, то попарной независимости недостаточно для независимости n событий в совокупности.

Определение. Cобытия В12,…,Вn  называются независимыми в совокупности, если для любого набора индексов 1  i1< i2 < …<ir  n 

Пример 12  (Пример Бернштейна). На плоскость бросают тетраэдр, три грани которого окрашены соответственно в красный, cиний и зеленый цвет, а на четвертую грань нанесены все три цвета. Cобытие А: “на плоскость выпала грань, cодержащая красный цвет»; событие В –«содержащая синий цвет»; событие C –“ зеленый». Р(А)= Р(В)=Р(C)=1/2, поскольку каждый цвет присутствует на двух гранях. Вероятность пересечения любых двух событий равна  Р(АC)=Р(ВC)=Р(АВ)=1/4. Отсюда следует, что любые два события независимы, например Р(АC)=1/4=1/2*1/2=Р(А)*Р(C). Cобытия А,В,C не являются независимыми в совокупности, т.к. Р(АВC)=1/4 Р(А)*Р(В)*Р(C)=1/8.

 

$10. ФОРМУЛА ПОЛНОЙ ВЕРОЯТНОСТИ.

     Пусть есть система непересекающихся событий H1, H2, H3,…, одно из которых обязательно осуществится в результате эксперимента. Такие события называют гипотезами. Пусть А- произвольное событие в этом эксперименте. Очевидно,.

Теорема 1 (формула полной вероятности)..

Доказательство. . Cобытия АН1, АН2, АН3... несовместны, и по третьей аксиоме вероятностей .

Пример 13. Представим себе странника, который на разветвлении дорог О выбирает наугад один из возможных путей. Обозначим через Вk, к=1,...,4, cобытие: «из пункта О странник отправится в пункт Вk . Cобытия В1, …, В4  являются гипотезами, прелположим, что Р(Вk)=1/4, к=1,...,4. Пусть есть также пункт А. Если странник придет в B1, то из него он может попасть в пункт А по одному из трех равновероятных направлений, Р(А/В1)=1/3. Аналогично, Р(А/В2)= 1/2, Р(А/В3)=1, Р(А/В4)=1/5. Тогда по формуле полной вероятности Р(А)=1/4*1/3+1/4*1/2+1/4*1+1/4*1/5=

                                                                           =55/120.

   $11. ФОРМУЛА БАЙЕСА.

   Пусть Н1, H2, H3,... - гипотезы, и пусть известны вероятности Р(Нk), k=1,2,.... В результате               эксперимента происходит некоторое событие А. Как изменятся вероятности гипотез при поступлении информации о том, что событие А произошло? Ответ дает

Теорема 2 (формула Байеса)..

Доказательство. Р(Нi/А)=Р(Нi*А)/Р(А). Заменим числитель в соответствии с теоремой умножения, а знаменатель – в соответствии с формулой полной вероятности.

Вероятности гипотез до эксперимента Р(Нk) называются априорными, а вероятности

Р(Нk/А) – апостериорными относительно события А. 

Пример 14. Спортсмены трех стран принимают участие в соревновании: 30 человек из первого  государства, 25 –из второго и 20 –из третьего. Спортсмены первого государства завоевали 3 медали, второго – 5, третьего – 6. Какова вероятность, что случайно выбранный спотрсмен, получивший медаль, из третьего государства?

Гипотеза Н1 - спортсмен из 1-ого государства, H2 - из второго, H3 – из третьего.

Р(Н1)= 30/75=2/5; Р(H2)=25/75=1/3; Р(H3)=20/75=4/15. Cобытие А – спортсмен получил медаль. Р(А/H1)=3/30=1/10; Р(А/H2)=5/25=1/5; Р(А/H3)=6/20=3/10. Вероятность, что спортсмен  - из третьего государства, при условии, что он получил медаль Р(H3/А)= Р(Н3)*Р(А/Н3)/(Р(Н1)*Р(А/H1)+ Р(Н2)*Р(А/H2)+ Р(Н3)*Р(А/H3))=

= (4/15*3/10)/(2/5*1/10+1/3*1/5+4/15*3/10)=3/7.

PAGE  10


 

А также другие работы, которые могут Вас заинтересовать

22075. ЗАГАЛЬНА МЕТОДОЛОГІЯ НАУКОВОГО ДОСЛІДЖЕННЯ 239.5 KB
  ТЕМА: ЗАГАЛЬНА МЕТОДОЛОГІЯ НАУКОВОГО ДОСЛІДЖЕННЯ План 1. методика і техніка дослідження. Методологічні основи педагогічного дослідження. Педагогічні дослідження: методологічні поради молодим науковцям.
22076. МЕТОДОЛОГІЯ ТЕОРЕТИЧНОГО ДОСЛІДЖЕННЯИ 51.5 KB
  ТЕМА: МЕТОДОЛОГІЯ ТЕОРЕТИЧНОГО ДОСЛІДЖЕННЯИ План 1. Методи наукового дослідження. Особливості теоретичного дослідження 3. Характеристика методів теоретичного дослідження.
22077. МЕТОДОЛОГІЯ ЕМПІРИЧНОГО ДОСЛІДЖЕННЯ 254.5 KB
  ТЕМА: МЕТОДОЛОГІЯ ЕМПІРИЧНОГО ДОСЛІДЖЕННЯ План 1. Сутність і особливості емпіричного дослідження. Переваги експерименту перед іншими методами дослідження. Сутність і особливості емпіричного дослідження Наукове дослідження любої предметної області починається з емпіричного рівня.
22078. СОЦИАЛЬНО-ПЕДАГОГИЧЕСКАЯ ДЕЯТЕЛЬНОСТЬ С ДЕТЬМИ-ИНВАЛИДАМИ И ИХ СЕМЬЯМИ 61.5 KB
  Ребенок с нарушениями развития не вписывался в картину счастливой жизни и нередко исключался из активной общественной жизни а его отношения с обществом опосредовались через здоровых членов семьи или систему специальных закрытых учреждений и как следствие этого изоляция больного ребенка и искусственное замалчивание проблемы детской инвалидности. Права лиц детей инвалидов отражены в ряде документов ООН: Всеобщая декларация прав человека1948; Декларация о правах инвалидов1971; Декларация о правах умственно отсталых лиц1971;...
22079. КАТЕГОРИИ И ФУНКЦИИ СОЦИАЛЬНОЙ ПЕДАГОГИКИ 32 KB
  В связи с тем что соц. педагогика стала самостоятельной наукой относительно недавно отделившись от педагогики и объект изучения у них практически одинаков то разделение категорий относящихся к разным наукам поможет выявить специфику соц. Много категорий взято соц.
22080. ПРОФЕССИОНАЛЬНО-ЛИЧНОСТНЫЙ ПОРТРЕТ СОЦИАЛЬНОГО ПЕДАГОГА 56.5 KB
  Специализация соц. Квалификационная характеристика соц. Функции соц.
22081. МЕТОДЫ СОЦИАЛЬНОЙ ПЕДАГОГИКИ 34 KB
  Методы соц. пед можно классифицировать объединив их в три большие группы: методы исследования; методы воспитания; методы социальнопсихологической помощи. Методы научного исследования это способы получения научной информации. ПЕДАГОГИЧЕСКИЙ ЭКСПЕРИМЕНТ является комплексным методом исследования и позволяет глубже чем другие методы проверить правильность выдвинутой гипотезы.
22082. ПРОФИЛАКТИКА НАРКОМАНИИ У ПОДРОСТКОВ 51.5 KB
  За последние пять лет по России число школьников и студентов употребляющих наркотики возросло более чем в 8 раз. Проведенный областным наркологическим диспансером и РИРО опрос учащихся школ и профессиональных училищ свидетельствует о том что более 17 их них уже пробовали наркотики: каждый четвертый юноша и каждая восьмая девушка. Около 4 подростков употребляют наркотики систематически. Исследование выявило что первая пробы наркотиков произошла в довольно молодом возрасте: в среднем это 1517 лет однако есть много и таких которые...
22083. Педагогика творчества 94.5 KB
  Если рассмотреть процентное соотношение одаренных и неодаренных детей то мы получим график в виде колокола: 22 сверходаренные дети; 135 выше нормы; 682 детей имеют средний интеллект; 135 ниже нормы; 22 умственно отсталые. Творческих детей отличает живое воображение включение элементов игры в выполнение задач изобретательность богатая фантазия нестандартность мышления отличная память в сочетании с ранним языковым развитием способность к классификации Барьерами тормозящими раскрытие творческого потенциала личности...