32446

ПРОИЗВОДЯЩАЯ ФУНКЦИЯ

Лекция

Математика и математический анализ

В каждом из них событие А может наступить с положительной вероятностью p. Вероятность что Х примет значение k т. в n испытаниях k раз наступит успех Действительно вероятность наступления k успехов в k фиксированных испытаниях и n – k неудач в остальных n – k испытаниях равна Распределить k успехов среди n испытаний можно способами. Какова вероятность что герб выпадет 4 раза При каждом подбрасывании успех – выпадение герба n = 10 k = 4 р = 1 2.

Русский

2013-09-04

97 KB

11 чел.

Лекция 5.

$5. ПРОИЗВОДЯЩАЯ ФУНКЦИЯ.

Производящая функция вводится для дискретных случайных величин, которые принимают в качестве своих значений только целые неотрицательные числа.  

Пусть случайная величина Х принимает значения 0,1,2,.. c вероятностями p0, р1, ,р2, … Функция П(z)  переменной z, , равная  называется производящей функцией случайной величины Х.

Производящая функция П(z) совпадает с математическим ожиданием случайной величины .

Утверждение 6. Из производящей функции П(z) однозначно определяются вероятности p0, р1 , р2,… значений целочисленной случайной величины Х.

Доказательство. Степенной ряд производящей функции сходится в круге радиуса 1. Внутри этого круга ряд можно сколько угодно раз дифференцировать.

П(0) = p0  ; 

……………………………………

Cледовательно,  m=0,1,2,3…

Утверждение 7. Если случайная величина имеет математическое ожидание МХ и дисперсию DX, то 

Доказательство.

$6. БИНОМИАЛЬНОЕ РАСПРЕДЕЛЕНИЕ.

Рассмотрим наиболее часто встречающиеся распределения дискретных случайных величин. Одно из них – биномиальное.

Пусть проводится серия из n одинаковых и независимых между собой испытаний. В каждом из них  событие А может наступить с положительной вероятностью p. Такие  испытания называются испытаниями Бернулли.

Cобытие А будем называть «успехом», а событие  – «неудачей».

Рассмотрим случайную величину Х – число успехов в n испытаниях. Она может принимать значения 0, 1, 2,…, n. Вероятность, что Х примет значение k, т.е. в n испытаниях k раз наступит успех  Действительно, вероятность наступления k успехов в k фиксированных испытаниях и ( k) неудач в остальных  (n  k) испытаниях равна  Распределить k успехов среди n испытаний можно  способами.

Распределение случайной величины Х называется распределением Бернулли или биномиальным распределением.

Пример 9. Монету подбрасывают 10 раз. Какова вероятность, что герб выпадет 4 раза?

При каждом подбрасывании «успех» – выпадение герба, = 10, = 4, р = 1/2.

       Биномиально  распределенная случайная величина X – это целочисленная величина. Введем для нее производящую функцию.

(бином Ньютона)  

Математическое ожидание  Дисперсия

Пример 10. Cреднее количество выпадений герба при 10 подбрасываниях монеты равно MX = np = 10*(1/2) = 5, дисперсия равна DX = nр= 5*(1/2) = 5/2.

$7. РАСПРЕДЕЛЕНИЕ ПУАССОНА.

Иногда на практике встречаются испытания Бернулли, в которых число испытаний n относительно велико, вероятность успеха p относительно мала, а их произведение  = n*p не мало и не велико. В таких случаях вместо биномиального распределения пользуются его приближением – распределением Пуассона.

При больших n:

Обозначим через pk вероятность Р(Х = k).

Cледовательно,  или:

Далее по индукции  Это и есть распределение Пуассона.

Пример 11. На курсе 100 студентов. Каждый может выиграть билет на концерт популярной музыкальной группы с вероятностью 1/20. Какова вероятность, что 6 человек с курса попадут на концерт?

     Cвяжем испытания Бернулли с каждым из студентов, n = 100, р = 1/20,  = 5.

Найдем математическое ожидание и дисперсию для случайной величины Х,  распределенной по закону Пуассона. Производящая функция

Пример 12. Математическое ожидание и дисперсия числа студентов, выигравших билет на концерт, cовпадают с параметром распределения Пуассона: МХ = DX =5.

Пример 13. В начале ХХ столетия инженер Эрланг заметил, что число звонков, поступающих на телефонную станцию за единицу времени, имеет распределение Пуассона. Параметр этого распределения равен среднему количеству звонков, поступающих на телефонную станцию за эту единицу времени.

$8. ГЕОМЕТРИЧЕСКОЕ РАСПРЕДЕЛЕНИЕ.

Пусть теперь испытания Бернулли проводятся до наступления первой неудачи. Cлучайная величина Х – число проведенных испытаний. Распределение Х можно задать с помощью таблицы.          

                                                                              

                                                                                       P(Х k) =рk-1*q,  k = 1, 2, 3,…

 

Такое распределение называется геометрическим.

Пример 14. Вероятность закатить хотя бы один шар в лузу при одном ударе бильярдиста постоянна и рана 0,7. Если при ударе закатить шар не удается, право удара переходит к другому игроку. Какова вероятность, что бильярдист сделает не менее 4 ударов?

Пусть X – число ударов, сделанных игроком.[Найдем вероятность дополнительного события. Р(Х< 4) = 0,3+0,7*0,3+(0,7)2*0,3 = 0,657.  Тогда Р(Х  4) = 1–0,657 = 0,343.

Производящая функция случайной величины с геометрическим распределением  Математическое ожидание Дисперсия

Пример 15. Cреднее число ударов бильярдиста MX=1/q=1/0,3=10/3=3,(3). Дисперсия числа ударов  DX= р/q= 0,7/(0,3)= 70/9 = 7,(7).

PAGE  18


 

А также другие работы, которые могут Вас заинтересовать

34110. Понятие регрессии. Роль регрессии в развитии психоаналитической терапии 48 KB
  Понятие регрессии. Роль регрессии в развитии психоаналитической терапии. Процесс регрессии – как временный постоянный защитный топический ситуационный. Патологическая и нормальная регрессии их формирование в процессе развития и их значение в функционировании психического аппарата и формировании различных уровней психопатологии.
34111. Принцип психоаналитической нейтральности. Реакции аналитика на пациента: рациональные аффективные, комплиментарные, эмпатические, контрпереносные 48 KB
  Принцип психоаналитической нейтральности. В данной теме особое внимание следует уделить пониманию центрального базового значения психоаналитического понимания нейтральности. Слово НЕЙТРАЛЬНОСТЬ neutrlity и концепция ПСИХОАНАЛИТИЧЕСКОЙ НЕЙТРАЛЬНОСТИ были амбивалентными с самого момента рождения психоанализа. Приветствуемая одно время как настолько фундаментальная что принимается как данность к нейтральности тут же стали тихо относиться как мифу.
34112. Психоаналитическое понятие тревоги и ее типы 85.5 KB
  Тревога и процесс регрессии в психоаналитической ситуации. Тревога рассматривается как архаичный аффект оторвавшийся от первоначального смыслового контекста. Объективная тревога это тревога вызванная известной опасностью. Невротическая тревога вызвана неизвестной опасностью.
34113. Неспецифические аспекты психоаналитической терапии 77 KB
  В данной теме необходимо сформировать четкое представление о неспецифических формах взаимодействия аналитика и пациента. Данный раздел дает четкое представление о вспомогательных формах и методах во взаимодействии аналитика и пациента в рамках психоаналитической терапии. Если он будет это делать с неохотой аналитик может сказать что его интересуют факты. Пациента увязнувшего в неискренней похвале своих родителей можно спросить: Ваши родители действительно замечательные люди Расспрашивание для прояснения очевидности: Вместо того чтобы...
34114. Роль сновидений в психоаналитической терапии и техника работы с ними 73 KB
  Работа сновидения. Роль сновидения в работе психического аппарата. Развитие понимание сновидения и его роли в терапевтическом процессе от З. Классические подходы к пониманию сновидения его роль в общей структуре психики.
34115. Психоанализ и психоаналитическая терапия, основные принципы 67.5 KB
  Основные принципы классического психоанализа разработанного в наследие З. Основные отличия внешние – организационные и методологические основы клинического психоанализа психоаналитической терапии. Обратить особое внимание на основные принципы классического психоанализа разработанного З. Предлагаю обсудить вопрос который постоянно в той или иной форме возникает в ходе как профессиональных так и студенческих обсуждений отголоски этой дискуссии звучат и в раздающихся все чаще и чаще утверждениях о том что под брендом психоанализа скрывается...
34116. Показание и противопоказания психоаналитической терапии 62 KB
  Некоторые особенности российского пациента. Так же следует обратить особое внимание на особенности российского пациента и особенности построения терапии в зависимости от психологической конституции. Фрейд полагал что последние две силы связаны между собой и что существует некоторое соответствие внешней реальности и психологической предрасположенности самого пациента Тем самым предполагалось наличие патогенных компонентов в прошлом которые должны предопределять повышенную чувствительность по отношению к определенным обстоятельствам в...
34117. Сеттинг. Определение, взаимозависимость терапевтической задачи и сеттинга 46.5 KB
  Роль сеттинга в построение переходного пространства в рамках котрого происходит развертывание фантазий пациента и осуществляется работа с переносом и сопротивлением. Следует разобраться в ключевой роли сеттинга для формирования у пациента способности восприимать и продуцировать символическую организацию мира. Пациент лежит на кушетке или софе а психоаналитик сидит позади него оставаясь большей частью вне поля зрения пациента стараясь вмешиваться в процесс мышления пациента настолько мало насколько это возможно и не иначе как посредством...
34118. Структурные изменения, как основная цель психоанализа и психоаналитической терапии 62.5 KB
  Еще в 1894 году в работе “Невропсихозы защиты†он показывает что абсисивный симптом является компромиссом между неприемлемым сексуальным желанием защитой против удовлетворения этого желания и раскаянием или самонаказанием. Давайте попробуем понять фразу: Каждый симптом и каждая невротическая черта характера является компромиссным образованием И попробуенм в связи с этим ответить на два вопроса. Компромиссное образование является патологическим когда оно характеризуется любой комбинацией следующих черт: слишком большое ограничение...