32449

Распределение Больцмана. Барометрическая формула. Второе начало термодинамики. Энтропия. Теорема Нернста. Основное уравнение термодинамики

Лекция

Физика

Для характеристики состояния системы при тепловых процессах Клаузиус ввел понятие энтропии S. Следует отметить что приращение энтропии не зависит от процесса а определяется только начальным конечным состояниями системы т. Свойства энтропии: энтропия – функция состояния. В реальных процессах тепло переходит от более к менее нагретым телам поэтому изменение энтропии каждого тела равно: где .

Русский

2013-09-04

322.5 KB

24 чел.

PAGE  1

Составил Бабичев С.А.

Лекция № 16.

Тема: Распределение Больцмана. Барометрическая формула. Второе начало термодинамики. Энтропия. Теорема Нернста. Основное уравнение термодинамики.

Пусть газ находится во внешнем поле потенциальных консервативных сил, действующих в одном направлении и зависящих только от координаты z. При тепловом равновесии температура Т должна быть одинакова по всей толщине газа, иначе бы возникли потоки тепла, и состояние газа не было бы равновесным. Найдем зависимость концентрации газа от высоты.

Выделим мысленно бесконечно узкий слой газа толщиной dz с площадью основания столба, равной единице (S = 1). Запишем условие равновесия этого слоя, используя гидростатический подход. На слой dz действует направленная вверх сила, обусловленная разностью давлений dp (dp < 0), и сила, действующая вниз со стороны внешнего поля. При равновесии должно соблюдаться равенство:

,

где Fz – проекция внешней силы, действующей на каждую молекулу. Из механики известно, что , где U – потенциальная энергия молекулы во внешнем поле. Поэтому можно записать: . Для идеального газа связь между давлением и температурой определяется соотношением:. Продифференцируем последнюю формулу по времени, учитывая, что : . В конечном итоге получаем:  или:

.

Проинтегрировав последнее уравнение, получаем: . Будем считать, что при  , а потенциальная энергия частицы на высоте z в однородном поле тяготения имеет вид: . Тогда формула зависимости концентрации молекул от высоты принимает вид:

.

Полученная закономерность и выражает распределение Больцмана. С помощью полученной формулы можно найти количество молекул в интересующем нас элементарном объеме: .

Умножив левую и правую части распределения Больцмана на kT, получим барометрическую формулу, выражающую зависимость давления от высоты:

.

Учитывая, что масса частицы и , окончательно получаем:

.

Следует отметить, что полученная формула справедлива только для идеального газа, температура которого не зависит от высоты.

Второе начало термодинамики. Энтропия.

Первое начало термодинамики представляет собой обобщение закона сохранения энергии на тепловые явления. Оно устанавливает количественные соотношения между превращениями одних видов энергии в другие. Второе начало определяет условия, при которых возможны эти превращения, а также возможные направления протекания процессов.

Рассмотрим схему работы тепловой машины, рабочим телом в которой является идеальный газ. Любой тепловой двигатель работает по замкнутому циклу. Если процесс совершается по часовой стрелке, то работа, производимая двигателем за цикл, положительная: А > 0.  Пусть Q1 – поглощенное тепло, a Q2 – отдаваемое тепло (Q2 > 0). Опыт показывает, что тепло Q2 неизбежно существует в любом тепловом двигателе. По первому началу за цикл приращение внутренней энергии рабочего вещества , поэтому . Эффективность теплового двигателя определяют его КПД, который равен отношению полезной работы газа к полученному им количеству теплоты:

, или .

Теоретически возможны процессы, при которых всё количество теплоты, полученное рабочим телом от нагревателя, будет превращено в полезную работу, т.е. Q2 = 0 и = 1, однако в природе такие процессы не наблюдаются. Эта объективная закономерность отражена во втором начале термодинамики. Существует несколько формулировок второго начала.

  1.  Клаузиус (1850): невозможен самопроизвольный переход тепла от менее к более нагретому телу, или невозможны процессы, единственным конечным результатом которых был бы переход тепла от менее к более нагретому телу.

Тот факт, что, например, в холодильнике совершается переход тепла от холодильной камеры в комнату, не противоречит этому утверждению, поскольку этот процесс не является самопроизвольным: для его осуществления потребляется электрическая энергия.

  1.  Кельвин (1851): невозможны процессы, единственным конечным результатом которых было бы превращение тепла целиком в работу.

Из второго начала термодинамики следует, что КПД теплового двигателя всегда меньше единицы, т.е. тепловые процессы необратимы. Необратимость тепловых процессов заключается в том, что при возвращении системы в исходное состояние происходят необратимые изменения состояний окружающих тел.

Для характеристики состояния системы при тепловых процессах Клаузиус ввел понятие энтропии S. Энтропия вводится через её элементарное приращение, как:

.

Следует отметить, что приращение энтропии не зависит от процесса, а определяется только начальным конечным состояниями системы, т.е. энтропия – функция состояния. В интегральной форме полученное выражение имеет вид:

,

Т.е. разность энтропий в двух равновесных состояниях равна приведенному количеству теплоты, которое надо сообщить системе, чтобы перевести её из состояния 1 в состояние 2.

Свойства энтропии:

  •  энтропия – функция состояния. Если процесс проводят вдоль адиабаты, то энтропия системы не меняется. Значит адиабаты – это одновременно и изоэнтропы. Каждой более «высоко» расположенной адиабате отвечает большее значение энтропии;
  •  энтропия – величина аддитивная, т.е. энтропия макросистемы равна суме энтропий отдельных её частей;
  •  энтропия замкнутой макросистемы не уменьшается – она либо возрастает, либо остаётся постоянной.

Т.к. , и в идеально теплоизолированной системе , то получаем: , т.е. энтропия системы не изменяется. В реальных процессах тепло переходит от более к менее нагретым телам, поэтому изменение энтропии каждого тела равно:

, , где .

Суммарное изменение энтропии: , т.е. .

Принцип возрастания энтропии замкнутых систем представляет собой еще одну формулировку второго начала термодинамики: Все реальные тепловые процессы сопровождаются возрастанием энтропии.

Теорема Нернста. В 1906 году Нернст открыл закон, который называют теоремой Нернста или третьим началом термодинамики: При приближении температуры к абсолютному нулю энтропия макросистемы также стремится к нулю:

при ,

И абсолютное значение энтропии можно вычислять по формуле:

.

Из последнего равенства следует, что при  теплоёмкость всех макросистем должна также стремится к нулю, при этом все процессы будут происходить без изменения энтропии.

Основное уравнение термодинамики представляет собой объединение энтропии с первым началом термодинамики. Т.к. , и , то в итоге получаем:

.

Рассчитаем с помощью полученного уравнения энтропию идеального газа. Пусть начальное и конечное состояния газа определяются параметрами . Учитывая, что  и , основное уравнение термодинамики можно переписать в виде: . Продифференцируем логарифм от уравнения Менделеева–Клапейрона: , . Взяв дифференциал от последнего уравнения, получаем: . Подставив полученное равенство в формулу изменения энтропии, получаем:

.

Но в соответствии с уравнением Майера для молей газа: . В конечном итоге формула изменения энтропии имеет вид: . Проинтегрировав последнее выражение, получим уравнение изменение энтропии идеального газа в системе pV:

.


 

А также другие работы, которые могут Вас заинтересовать

36279. Мультимедиа технология. Основные понятия, представление мультимедийной информации, функции и области применения 38.5 KB
  Мультимедиа сочетание возможности создания видеоэффектов аудиоэффектов под управлением интерактивного программного обеспечения ПО. Итак мультимедиа сочетание специальных новейших аппаратных средств и ПО позволяющих на качественно новом уровне воспринимать воспроизводить перерабатывать видеоэффекты и аудиоэффекты что дает возможность создавать виртуальную реальность. Создание специальных мультимедиа программ которые вызываются как командные файлы так и в алгоритмических языках.
36280. Мультимедиа технология. Текстовые файлы и гипертекст. Форматы текстовых файлов. Растровая и векторная графика. Форматы графических файлов 46 KB
  Форматы текстовых файлов. Форматы графических файлов. Форматы графических файлов Форматы графических файлов отличаются способами кодировки цвета алгоритмами сжатия информации и возможностями размещения в файле дополнительной например текстовой информации. Форматов существует несколько десятков на первых этапах разработки графических программ каждый разработчик придумывал свои стандарты.
36281. Мультимедиа технология. Синтез звука. Форматы звуковых файлов 72 KB
  Синтез звука. Синтез звука Создание звука средствами электроники дело нехитрое. В отношении звуков представляющих собой комбинации тонов различной частоты была установлена плодотворная закономерность суть которой сводится к тому что для создания любого звука необходимо только найти правильную комбинацию частот В современных синтезаторах нашли широкое применение два метода: частотная модуляция и синтез с использованием таблицы форм сигналов. Синтез с вычитанием Первые настоящие музыкальные синтезаторы использовали аналоговую технологию.
36282. Мультимедиа технология. Трехмерная графика и анимация. Видео. Форматы видео файлов. Стандарты сжатия MPEG 37 KB
  Кроме того технология открытых систем позволяет работать сразу с несколькими пакетами. Можно создать модель в одном пакете разрисовать ее в другом оживить в третьем дополнить видеозаписью в четвертом. И наконец функции многих профессиональных пакетов можно сегодня расширить с помощью дополнительных приложений написанных специально для базового пакета. 3D Studio MX Один из самых известных пакетов 3Dанимации производства фирмы Kinetix.
36283. Технические средства мультимедиа. Их характеристика 83 KB
  К техническим средствам входящим в состав компьютера для обеспечения мультимедийных функций относятся: Звуковые платы Акустические системы Платы ввода – вывода видеосигналов CD – ROM приводы только для чтения CD дисков и CD RW приводы – чтение и запись DVD приводы только чтение Сканнеры – устройства считывания информации с бумажных листов фотографий и т. DVD диски Появление формата DVD ознаменовало собой переход на новый более продвинутый уровень в области хранения и использования данных звука и видео. расшифровка...
36286. HTML (HyperText Markup Language). Структура гипертекстового документа 181 KB
  Средствами HTML задаются синтаксис и размещение специальных встроенных указаний в соответствии с которыми браузер отображает содержимое документа текст графика мультимедиа гиперссылки. DHTML Dynmic HyperText Mrkup Lnguge : Клиентские сценарииJvScript и VBScript Серверные сценарии SP и PHP Технологии Jv и CGI плагин plugin приложения Другие средства Структура гипертекстового документа html hed title Заголовок HTML документа title hed body Тело HTML документа body...
36287. HTML (HyperText Markup Language). Символы комментариев 131 KB
  и знаков операций для которой можно вычислить значение. При объявлении переменной ей может быть присвоено значение. vr Strbc; Объявлена переменная Strbc vr x=7; Переменной х присвоено значение 7 При составлении сценариев JvScript можно использовать переменные без их предварительного объявления. Если prseFlot сталкивается с недопустимым символа то метод возвращает значение основанное на подстроке следующей до этого символа игнорируя все последующие.