32451

Адиабатический процесс. Уравнение Пуассона. Политропические процессы. Работа газа при политропических процессах. Газ Ван–дер–Ваальса

Лекция

Физика

Работа газа при политропических процессах. адиабатное расширение газа сопровождается его охлаждением. Политропическим называется процесс перехода газа из одного состояния в другое при котором теплоёмкость остаётся постоянной Сn = const. Покажем что при политропическом процессе теплоёмкость газа остаётся постоянной.

Русский

2013-09-04

311 KB

36 чел.

PAGE  1

Составил Бабичев С.А.

Лекция № 14.

Тема: Адиабатический процесс. Уравнение Пуассона. Политропические процессы. Работа газа при политропических процессах.

Газ Ван–дер–Ваальса.

Адиабатическим называется процесс, протекающий без теплообмена с окружающей средой. Т.к. , то первый закон термодинамики для адиабатического процесса будет иметь вид: . Но , а . После подстановки получаем: . Так как , то  или  . Последнее выражение представляет собой дифференциал суммы логарифмов: , откуда следует что  . Так как , то . Используя свойства логарифмов (), получаем:

.

Выразим температуру из уравнения Менделеева–Клапейрона и подставим в последнюю формулу: ,  . Но т.к.  , то в итоге получаем:  или  . Полученное уравнение называется уравнением Пуассона. Следует отметить, что в природе в реальных условиях не существует идеально изолированных систем. Однако количество теплоты, которым обменивается система с окружающей средой будет тем меньше, чем меньше времени длится процесс. Поэтому близкими к адиабатическому являются только быстропротекающие процессы. График адиабатического процесса – адиабата. Сопоставление уравнения изотермы  с уравнением адиабаты  с учетом того, что >1, позволяет сделать вывод, что адиабата идёт круче, чем изотерма, т.е. адиабатное расширение газа сопровождается его охлаждением.

Политропическим называется процесс перехода газа из одного состояния в другое, при котором теплоёмкость остаётся постоянной (Сn = const). Уравнение зависимости давления от объема при политропическом процессе имеет вид:

,

где n – произвольное число. Т.к. , то после подстановки получаем:

или .

Полученное уравнение является уравнением политропы в системе TV. Покажем, что при политропическом процессе теплоёмкость газа остаётся постоянной. Математическая запись первого начала термодинамики имеет вид:

.

Разделим левую и правую часть на dT: . Учитывая, что  и , получаем: .

Т.к. , то производная от левой части равна нулю: , и , откуда следует:  или . Для одного моля газа . После подстановки получаем: . Подставим последнее выражение в формулу теплоёмкости: . Учитывая, что , окончательно получаем:

,

Откуда следует, что теплоёмкость вещества при политропическом процессе является величиной постоянной.

Если , то  и , получаем адиабатический процесс. При  получаем  и Т = const, т.е. изотермический процесс.

Определим работу газа при политропических процессах. Из первого начала термодинамики следует: . Для молей газа . Поэтому выражение для работы можно переписать в виде: . Полная работа равна: .

Газ Ван–дер–Ваальса.

Поведение реальных газов описывается уравнением Менделеева–Клапейрона только при невысоких давлениях и высоких температурах. При повышении давления и температуры наблюдается значительное расхождения теории и эксперимента. Причин этому две: 1) собственный размер молекул; он и уменьшает объем, доступный для движения частиц, при нормальных условиях он составляет 0,07 % объема сосуда с газом, а при 100 атм. уже 70% 2)                          сложный характер взаимодействия между молекулами. Типичная кривая зависимости энергии взаимодействия от расстояния г между их центрами приведена на рисунке.  На малых расстояниях молекулы отталкиваются, на больших – притягиваются. Эти причины можно учесть путем введения поправок в уравнение состояния идеальных газов, что и сделал Ван-дер-Ваальс. В результате уравнение состояния одного моля реального газа приняло вид:

.

Полученное уравнение называется уравнением Ван–дер–Ваальса или уравнением состояния реального газа. Здесь а и b – постоянные Ван-дер-Ваальса, для разных газов они имеют свои значения. Поправка в первой скобке  обусловлена силами притяжения между молекулами. Она имеет размерность давления, и ее иногда называют внутренним давлением. На стенку сосуда такой газ оказывает давление р. Однако, если бы силы притяжения между молекулами мгновенно исчезли, то давление на стенку стало бы р + . Т. е. при переходе от идеального газа к реальному давление на стенку уменьшается из-за сил притяжения между молекулами. Поправка b связана с собственным объемом молекул, ее размерность м3/моль.

Внутренняя энергия газа Ван–дер–Ваальса состоит из суммарной кинетической энергии молекул в Ц – системе и суммарная энергия взаимодействий молекул:

.

Для нахождения собственной потенциальной энергии воспользуемся тем, что работа сил притяжения равна убыли потенциальной энергии: . Силы притяжения характеризуются внутренним давлением р =. Тогда элементарная работа этих сил , где знак минус обусловлен тем, что при расширении газа работа  должна быть отрицательной. После подстановки получаем:

или  .

Так как работа равна убыли собственной потенциальной энергии, то можно записать:  . Суммарная кинетическая энергия зависит от поступательного и внутреннего движений молекул, и определяется как  . Таким образом, внутренняя энергия моля газа Ван–дер–Ваальса:

.


 

А также другие работы, которые могут Вас заинтересовать

3242. Учет векселей 355.5 KB
  Кризис финансовой системы ежегодно проявляется в каком-либо сегменте финансового рынка. Так 1993 г. характеризовался быстрым нарастанием неплатежей в сфере материального производства, это было приостановлено проведением взаимозачета долгов. ...
3243. Двухкаскадный усилитель звуковой частоты с несимметричным входом и выходом 175.5 KB
  Разрабатываемое устройство представляет собой двухкаскадный усилитель звуковой частоты с несимметричным входом и выходом. Усилитель может получить широкое распространение в аппаратуре связи как предварительный усилитель НЧ сигналов, в каналообразующей аппаратуре в индивидуальных преобразователях.
3244. Курс лекций по метрологии, стандартизации и серитификации 530 KB
  Метрология. Основные термины, применяемые в метрологии Метрология — наука о весах и мерах. Термин «метрология» произошел от греческого metron — мера и logos — учение, слово. Основные направления метрологии: общая теор...
3245. Технологическое обеспечение качества поверхности деталей машин методами ППД 29 KB
  Технологическое обеспечение качества поверхности деталей машин методами ППД Исходные данные: Заготовка сталь 40, d=100мм. Для ролика d=115мм; профильный радиус 5мм. Для шарика d=10мм; угол вдавливания Для алмаза радиус сферы 4мм; радиальное биение 0...
3246. Расчеты по поточно-ритмичной технологии производства свинины на промышленном комплексе №125 70.5 KB
  Общая тема: Расчеты по поточно-ритмичной технологии производства свинины на промышленном комплексе №125. Технологические группы свиней. 1.Хряки ( при искусственном осеменении, в том числе пробники) 2.Ремонтные хрячки (со дня покупки из племферм, до...
3247. Сбалансированные системы показателей и эффективность 351 KB
  Лекция 1. Сущность и значение эффективности работы предприятия Лекция 2. Основные принципы формирования эффективной системы хозяйствования предприятия Лекция 3. Системы показателей эффективности А) Модель Дюпон Б) Французская «панель управления»...
3248. Философия: задания и упражнения 2.41 MB
  В пособие включены основные теоретические положения, упражнения и практические задания по курсу "Философия", а также некоторый дополнительный материал, облегчающий пользование пособия Назначение пособия - включить изучающих философию в проблемную си...
3249. Производственный менеджмент. Тексты лекций 586.5 KB
  Введение Современное производство характеризуется постоянно изменяющимися параметрами внешней и внутренней среды, острой необходимостью оперативно применять прогрессивные технологии изготовления продукции, организации и управления предприятием, в ко...
3250. Изучение омических сопротивлений 208 KB
  В настоящей лабораторной работе «Изучение омических сопротивлений» рассматриваются основные законы электрического тока. Вводятся понятия сопротивления, напряжения, разности потенциалов и эдс. Показаны различные способы определения омических...