32507

МЕТОДИКА ИЗУЧЕНИЯ СОДЕРЖАТЕЛЬНОЙ ЛИНИИ: «АРИФМЕТИЧЕСКИЕ ОСНОВЫ КОМПЬЮТЕРА»

Лекция

Информатика, кибернетика и программирование

Система счисления это определенный способ представления чисел и соответствующие ему правила действия над числами. Римский способ записи чисел является примером непозиционной системы счисления а арабский это позиционная система счисления. Позиционных систем счисления существует множество и отличаются они друг от друга алфавитом множеством используемых цифр. Размер алфавита число цифр называется основанием системы счисления.

Русский

2013-09-04

63.5 KB

14 чел.

екция №17. Теория и методика обучения информатики,

МЕТОДИКА ИЗУЧЕНИЯ СОДЕРЖАТЕЛЬНОЙ ЛИНИИ: «АРИФМЕТИЧЕСКИЕ ОСНОВЫ КОМПЬЮТЕРА».

Это одна из традиционных тем курса информатики или программирования. Являясь смежной с математикой, данная тема вносит вклад также и в фундаментальное математическое образование школьников.

С методической точки зрения бывает очень эффективным прием, когда учитель подводит учеников к самостоятельному, пусть маленькому, открытию записав числа:

XXX                         333

В римском способе записи чисел значение, которое несет каждая цифра в числе, не зависит от позиции этой цифры. В арабском же способе значение, которое несет каждая цифра в записи числа, зависит не только от того, какая это но и от позиции, которую она занимает в числе.

Система счисления — это определенный способ представления чисел и соответствующие ему правила действия над числами.

Римский способ записи чисел является примером непозиционной системы счисления, а арабский — это позиционная система счисления.

Позиционных систем счисления существует множество, и отличаются они друг от друга алфавитом — множеством используемых цифр. Размер алфавита (число цифр) называется основанием системы счисления.

Основание арабской системы счисления равно десяти, поэтому она называется десятичной.

Следует показать алфавиты различных позиционных систем счисления. Системы с основанием не больше 10 используют только арабские цифры. Если же основание больше 10, то в роли цифр выступают латинские буквы в алфавитном порядке.

Далее нужно научить учеников записывать натуральный чисел в различных позиционных системах. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, ..., 19, 20, ..., 99, 100, 101, …

По такому же принципу строится натуральный ряд и в других темах счисления. 14   24   34, 104, 114, 124, 134, 204, 214.

Наибольший интерес представляет натуральный ряд двоичных чисел:

1,. 10, 11, 100, 101, 110, 111, 1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111, 10000, ...

Следует обратить внимание учеников на быстрый рост числа цифр.

Ни в коем случае нельзя называть недесятичные числа так же, как десятичные. Сущность позиционного представления чисел отражается в развернутой форме записи чисел:

5319,12 = 5000 + 300 + 10 + 9 + 0,1 + 0,02 = = 5·103 + 3·102 + 1·101  + 9 ·100 + 1·10-1 + 2·10-2 .   

17538 = 1·103  + 7·102  +5·101 - 3.

Следующий вопрос, изучаемый в этом разделе, — способы перевода чисел из одной системы в другую. Поскольку нам хорошо знакома лишь десятичная арифметика, то любой перевод следует свести к выполнению вычислений над десятичными числами.

Объяснение способов перевода следует начать с перевода десятичных чисел в другие системы счисления:

17538 = (1·103  + 7·102  + 5·101  + 3)8 = (1·83 + 7·82 + 5·81 - 3)10.

17538 = (192 + 448 + 40 + 3)10 = 68310.

Чаще всего развернутую форму числа сразу записывают в десятичной системе: 101101,12 = (1·25  + 0·24  + 1·23  + 1·22 + 0·21  + 1 + + 1·2-1)10 = 32 + 8 + 4 + 1 + 0,5 = 45,510.

Перевод десятичных чисел в другие системы счисления — задача более сложная. Нужно десятичное число разложить в сумму по степеням нового основания n  10. Например, число 8510 по степеням двойки раскладывается так:

8510   = 1·26  + 0·25  + 1·24  + 0·23  + 1·22   + 0·21  + 1 = 10101012.

Многие дробные рациональные десятичные числа в других системах счисления оказываются иррациональными.

Для выполнения вычислений с многозначными числами необходимо знать правила сложения и правила умножения однозначных чисел. Вот эти правила:

0  +  0  =  0

0  x  0  =  0

1  +  0  =  1

1  x  0  =  0

1  +  1  = 10

1  x  1  =  1

Принцип перестановочности сложения и умножения работает во всех системах счисления. Приемы выполнения вычислений с многозначными числами в двоичной системе аналогичны десятичной.

Представление информации, хранящейся в компьютерной памяти в ее истинном двоичном виде весьма громоздко из-за большого количества цифр. Принято использовать восьмеричную или шестнадцатеричную системы счисления.

Существует простая связь между двоичным и шестнадцатеричным  представлением числа.

16

2

16

2

0

0000

8

1000

1

0001

9

1001

2

0010

А

1010

3

0011

В

1011

4

0100

С

1100

5

0101

D

1101

6

0110

Е

1110

7

0111

F

1111

16 = 24, число различных 4-разрядных комбинаций из цифр 0 и 1 равно 16: от 0000 до 1111. Поэтому перевод чисел из «16» в «2» и обратно производится путем формальной перекодировки. Преимущество шестнадцатеричного представления состоит в том, что оно в 4 раза короче двоичного.

Примеры решения задач

Пример 1. Перевести в десятичную систему числа: 2213; Е41А,1216.

Пример 2. Перевести шестнадцатеричные числа в восьмеричную систему.

Пример 3. Найти основание р системы счисления и цифру n если верно равенство: 33m5п + 2n443 = 55424. Пример выполнен в системе счисления с основанием р, m — максимальная цифра в этой системе.

Решение.

Запишем столбиком данное сложение:

33m5n

2n443

55424

Очевидно, основание системы р > 6 , так как присутствует цифра 5. Сложение в младшем разряде дает: n + 3 = 4. Отсюда n = 1. во втором разряде слева дает:

5 + 4 = 12p = (1·p + 2)10 = 910.

Отсюда следует, что р = 9 — 2 = 7. Наибольшая цифра в семеричной системе — 6. Значит m = 6. Если теперь подставить в данные выражение вместо букв соответствующие им цифры: n = 1, m = 6 и выполнить сложение в семеричной системе счисления, то получится сумма, данная в условии задачи.

Пример 4. В какой системе счисления выполнено следующее сложение?

 756

 307

2456

…24

3767

Решение. Решение этой задачи рекомендуется искать методом гипотез. Очевидно, что основание системы р > 8. Можно предположить, что оно меньше 10, поскольку нет буквенных цифр, а правилам десятичной арифметики данный пример не удовлетворяет. Примем гипотезу о том, что р равно 8 или 9. Выполним сложение младших разрядов в десятичной системе:

6 + 7 + 6 + 4 =2310 =Х7Р.

В системе с основанием р это двузначное число с младшей цифрой 7 и неизвестной первой цифрой слева. Переведем число 2310 в восьмеричную и девятеричную системы. Получим:

2310 = 278 = 259.

Очевидно, подходит вариант р = 8. Проверяя выполнение сложения других разрядов в восьмеричной системе, убеждаемся, что предположение сделано правильное.

Ответ: р = 8.

Требования к знаниям и умениям при изучении темы «Арифметические основы компьютера»

Учащиеся должны знать:

  •  функции языка как способа представления информации; что такое естественные и формальные языки;
  •  что такое «система счисления»;
  •  в чем различие между позиционными и непозиционными системами счисления;

Учащиеся должны уметь:

  •  переводить целые числа из десятичной системы счисления в другие системы и обратно;
  •  выполнять простейшие арифметические операции с двоичными числами;
  •  •*осуществлять перевод целых и дробных десятичных чисел в другие позиционные системы счисления и обратный перевод;
  •  •*переходить от записи двоичной информации к восьмеричной и шестнадцатеричной форме и осуществлять обратный переход.

PAGE  5


 

А также другие работы, которые могут Вас заинтересовать

52893. Охорона навколишнього середовища 102.5 KB
  This footage includes Masai in their own village. No animals were harmed in any way during the making of this music video. Shock footage of the actual inhumane treatment of animals was acquired from documents archives. It should be noted that while filming was in progress an Africa elephant (not pictured in the video) was killed by poachers within miles of the shoot.
52894. Entertainment. Things to do 323 KB
  Materials: Blackboard, textbook, worksheet, 2 computers, projector, powerpoint presentation, computer speakers, students’ projects, powerpoint template for student’s advertisements, ball
52895. Environmental protection 42.5 KB
  Green Peace is an international organization the main purpose of which is the protection of the environment. It provides active actions for nuclear – free future against the pollution of the biosphere and protection of nature. Green Peace was established by a group of North – American activists in 1971. The organization is worried about the disappearance of many species of animals and plants emission of radioactive and other harmful substances into the atmosphere, seas and oceans.
52897. GLOBAL COLLABORATIVE WORK WITH EPALS 79 KB
  An outstanding American philosopher, psychologist and educational reformer John Dewey perfectly said, "Education is not a preparation for life; education is life itself." We are in an era in which teachers and books are not the only sources of information and lectures are not the only method for delivering and acquiring knowledge. Learning in the 21st century requires critical thinking, adept use of technology...
52898. ЕПОХА ГЕНІЇВ І ТИТАНІВ 231 KB
  Група ІІ Географи та винахідники Великі географічні відкриття та наукові винаходи епохи Ренесансу Група ІІІ Філософи Світоглядні засади гуманізму та його втілення митцями доби Відродження Група ІV Мистецтвознавці Основні тенденції розвитку мистецтва Ренесансу Група V Педагоги –гуманісти Гуманістичні теорії навчання та втілення мрії про щасливе майбутнє у творах представників епохи Група VІ Літературознавці та декламатори Людські почуття та пристрасті у творах найвидатніших представників епохи...
52899. Еритроцити. Переливання крові 153 KB
  Мета уроку 1. Навчальна: Формування поняття про еритроцити як формені елементи крові; формування поняття про групи крові; формування поняття про взаємозв’язок біологічних явищ з математичними діями. Тип уроку: урок засвоєння нових знань Форма уроку: уроклабораторія Обладнання: мікрокопи постійні мікропрепарати крові людини та жаби таблиця Групи крові Міжпредметний зв’язок: біологія тварин історія математика статистика географія фізика Технологічна карта уроку № Етап урока Форма реалізації Кінцевий...
52900. Урок – конкурс з трудового навчання «Технічні ерудити» 34 KB
  Для цього весь навчальний рік розподіляють між навчальними предметами для проведення тижнів фізики хімії літератури трудового навчання тощо. Оскільки в конкурсі передбачено тури в яких виконуються трудові операції треба провести інструктаж з правил безпечної роботи. Після кожного туру конкурсу журі оголошує результати в балах. Програма проведення конкурсу 1й тур Кожний учасник змагання отримує завдання виконати на дошці ескіз деталі та проставити розміри на око.
52901. Екологічний ерудиціон (екологічна гра) 76 KB
  І ми спробуємо сьогодні дати відповідь на нього. Команда за кожну правильну відповідь отримує свою смужку а земна куля очищається від сміття. За правильну відповідь 1 бал Запитання 1. Якщо команда дає неправильну відповідь з подальшої боротьби в цьому турі вибуває.