32534

Использование графического редактора для изображения пространственных фигур

Практическая работа

Информатика, кибернетика и программирование

Показывается как построить треугольник по его трем элементам биссектрису угла серединный перпендикуляр прямую параллельную данной и т. Возьмем правильный шестиугольник рис. Получим шестиугольник изображенный на рисунке 1 б. Получим шестиугольник изображенный на рисунке 1 в который и будет искомой параллельной проекцией исходного правильного шестиугольника.

Русский

2013-09-04

299 KB

16 чел.

рактическая работа. ППС и методика их использования

ИСПОЛЬЗОВАНИЕ ВЕКТОРНЫХ ГРАФИЧЕСКИХ РЕДАКТОРОВ НА УРОКАХ ГЕОМЕТРИИ

Использование графического редактора

для изображения пространственных фигур

В школьном курсе геометрии 7—9 классов  рассматривается способ построения фигур на плоскости с помощью циркуля и линейки. Показывается, как построить треугольник по его трем элементам, биссектрису угла, серединный перпендикуляр, прямую, параллельную данной, и т. д. В старших классах изучается параллельное проектирование и изображение пространственных фигур в параллельной проекции.

Использование циркуля и линейки для изображения пространственных фигур имеет свои недостатки:

  1.  Оно занимает много времени даже для изображения простых пространственных фигур, не говоря уже о сложных.
  2.  Для изображения круглых тел (цилиндр, конус, сфера) требуется построить изображение окружности, являющееся эллипсом. Однако циркулем и линейкой можно построить отдельные точки эллипса, но не весь эллипс. Соединяя же отдельные построенные точки эллипса плавной кривой, мы получим только приближенное изображение эллипса, не всегда хорошего качества.
  3.  Использование циркуля и линейки является скорее теоретическим методом, свидетельствующим о возможности построения фигуры, чем практическим. На практике неизбежные погрешности могут приводить к неправильным изображениям. Например, такие погрешности возникают при построении прямой, параллельной данной, и т. п.

Строить изображения пространственных фигур можно не только с помощью циркуля и линейки, но и используя графические редакторы. Такой способ изображения пространственных фигур имеет ряд преимуществ по сравнению с использованием циркуля и линейки.

  1.  Наличие в стандартных фигурах графического редактора правильных многоугольников и эллипса, легкость построения параллельных прямых, параллелограммов и др. существенно ускоряет процесс построения, дает возможность изображать многогранники и круглые тела.
  2.  Использование графического редактора позволяет получать изображение гораздо более сложных пространственных фигур, в том числе и комбинации многогранников и тел вращения.
  3.  Построенные учениками изображения могут составить компьютерную коллекцию изображений пространственных фигур, ежегодно пополняемую другими учениками.

Рассмотрим возможности использования графического редактора «Corel Draw» для получения изображения плоских и пространственных фигур.

Для изображения правильных многоугольников в параллельной проекции в графическом редакторе «Corel Draw» можно воспользоваться операциями Наклон и Размер, применяя их к правильным многоугольникам, имеющимся в этом редакторе.

В качестве примера построим изображение правильного шестиугольника. Возьмем правильный шестиугольник (рис. 1, а) и применим к нему Наклон. Получим шестиугольник, изображенный на рисунке 1, б. Применим к нему Размер, сжимая его по вертикали. Получим шестиугольник, изображенный на рисунке 1, в, который и будет искомой параллельной проекцией исходного правильного шестиугольника.

Аналогичным образом строятся изображения других правильных многоугольников.

Рис.1

Используя эти изображения, можно строить изображения многогранников.

Например, для построения изображения куба в параллельной проекции возьмем квадрат (рис. 2, а). Это будет изображение передней грани куба. Скопируем ее и копию параллельно перенесем на некоторый вектор (рис. 2,б). Это будет изображение задней грани куба. Соединим отрезками соответствующие вершины передней и задней граней и сделаем три невидимых ребра пунктирными. Получим искомое изображение куба (рис. 2, в).

Рис.2

Для построения изображения правильной шестиугольной призмы воспользуемся изображением правильного шестиугольника (рис. 3, а). Это будет изображение нижнего основания призмы. Скопируем его и перенесем вертикально вверх на некоторое расстояние. Это будет изображение верхнего основания призмы (рис. 3, б). Соединим отрезками соответствующие вершины верхнего и нижнего оснований и сделаем невидимые ребра пунктирными. Получим искомое изображение правильной шестиугольной призмы (рис. 3, в).

Рис.3

Так как параллельной проекцией окружности является эллипс, то для получения изображения окружности достаточно просто воспользоваться инструментом Эллипс.

Для получения изображения окружности с вписанным или описанным около нее правильным треугольником достаточно соответственно вписать или описать правильный треугольник около исходной окружности (рис. 4, а), а затем сжать их в направлении одного из диаметров (рис. 4, б). Аналогично, для получения изображения окружности с вписанным или описанным около нее квадратом достаточно соответственно вписать или описать квадрат около исходной окружности (рис. 4, в), а затем сжать их в направлении одного из диаметров (рис. 4, г).

Рис.4

В некоторых случаях изображения круглых тел требуется нарисовать диаметр, перпендикулярный диаметру, изображение которого дано. Пусть, например, дано изображение окружности и ее диаметра АВ (рис. 5,а). Требуется изобразить диаметр, ему перпендикулярный. Восстановим окружность, сжатием которой получен эллипс, и растянем изображение АВ диаметра в вертикальном направлении до диаметра А'В' этой окружности (рис. 5, б). Повернем этот диаметр на 90°. Получим перпендикулярный диаметр C'D'. Сожмем этот диаметр в вертикальном направлении до отрезка CD с вершинами в точках эллипса (рис. 5, в). Этот отрезок CD и будет искомым изображением.

Изображение перпендикулярного диаметра можно получить и по-другому. А именно, проведем какую-нибудь хорду А'В', параллельную АВ, и через середины отрезков АВ и А'В' проведем отрезок CD (рис. 5, г). Он и будет искомым изображением.

Рис.5

Используя изображение эллипса, так же как и в случае призмы, можно получить изображение цилиндра (рис. 6, а).

На рисунке 6, б показано, как можно получить изображение сечения цилиндра плоскостью. Для этого достаточно взять эллипс верхнего основания цилиндра, повернуть его на некоторый угол, опустить вниз на некоторое расстояние и растянуть так, чтобы он касался образующих цилиндра.

Рис.6

Сфера обычно изображается в ортогональной проекции. Изображение сферы с выделенным экватором получается сжатием окружности в вертикальном направлении (рис. 7, а). Для нахождения изображения полюсов будем считать исходное изображение сферы видом спереди и построим вид сферы слева. Большая окружность и ось сферы изобразятся перпендикулярными диаметрами (рис. 7, б). Изображение полюсов на основной плоскости получается параллельным переносом полюсов на виде сферы слева.

Рис.7

На практике можно не прибегать к виду сферы слева. Для построения изображения полюсов S и S1 достаточно заметить, что имеют место равенства отрезков OP = SQ. После этого полюса сферы изображаются так, чтобы выполнялось это равенство (рис. 7, а).

При изображении конуса (рис. 8, а) следует иметь в виду, что видимые образующие конуса касаются эллипса в точках, расположенных выше большой оси эллипса (рис. 8, б). Изображение сечения конуса плоскостью (рис. 8, в) получается так же, как и изображение сечения цилиндра плоскостью.

Рис.8

Рассмотрим теперь вопрос об изображении вписанных и описанных многогранников.

Для построения изображения правильной треугольной призмы, вписанной в цилиндр, воспользуемся изображением правильного треугольника, вписанного в окружность. Это будет изображение верхнего основания призмы. Скопируем его и перенесем вертикально вниз на некоторое расстояние. Это будет изображение нижнего основания призмы. Соединим отрезками соответствующие точки верхнего и нижнего оснований и сделаем невидимые ребра пунктирными. Получим искомое изображение правильной треугольной призмы, вписанной в цилиндр (рис. 9, а). Аналогичным образом строятся изображение правильной треугольной призмы, описанной около цилиндра (рис. 9, б), и правильных четырехугольных призм, вписанной и описанной около цилиндра (рис. 9, в).

Рис.9

Построим правильную треугольную призму с вписанной в нее сферой. Для этого воспользуемся изображением сферы и опишем около ее экватора правильный треугольник (рис. 10, а). Скопируем этот треугольник и  перенесем его вертикально вверх и вниз на расстояние OS. Это будут изображения верхнего и нижнего оснований призмы. Соединим отрезками соответствующие вершины верхнего и нижнего оснований и сделаем невидимые ребра пунктирными. Получим искомое изображение правильной треугольной призмы с вписанной в нее сферой (рис. 10, б). Аналогичным образом строится изображение куба с вписанной в него сферой (рис. 10, в).

Рис.10

Упражнения

  1.  Постройте изображения квадрата и правильного пятиугольника.
  2.  Постройте изображения правильных пятиугольных призмы и пирамиды.
  3.  Постройте изображения правильных пятиугольников и шестиугольников, вписанных и описанных около окружности.
  4.  По данному изображению окружности и ее диаметра постройте изображение перпендикулярного ему диаметра.
  5.  Изобразите правильную пятиугольную призму, вписанную в цилиндр.
  6.  Изобразите правильную шестиугольную призму, описанную около цилиндра.
  7.  По данному изображению цилиндра постройте центры вписанной и описанной сфер.
  8.  По данному изображению конуса постройте центры вписанной и описанной сфер.
  9.  Изобразите треугольную пирамиду и описанную около нее сферу.
  10.  Изобразите треугольную пирамиду и вписанную в нее сферу.
  11.  Изобразите конус и описанную около него сферу.
  12.  Изобразите конус и вписанную в него сферу.

PAGE  - 8 -


 

А также другие работы, которые могут Вас заинтересовать

40897. Повільні хвилі 183.5 KB
  Непрямолінійний розповсюджувач меандр спіраль Для багатьох електричних приладів необхідно отримати хвилю, що рухається зі швидкістю . Це зокрема стосується приладів, у яких відбувається передача енергії та інформації від хвилі іншим носіям.
40898. Гібридні хвилі 91 KB
  У випадку розглянутому вище, хвильовода (стержня), ми маємо три граничні умови і дві константи в рівняннях, а тому рівняння в загальному випадку не буде мати розв’язків. Однак, тут нам потрібно розглядати не тільки, а і хвилю : Тепер поле описується чотирма константами і відповідно чотирма граничними умовами.
40899. Об’’ємні резонатори 117.5 KB
  З урахуванням граничних умов на бокових стінках (стінках хвильовода): Накладемо ще дві граничні умови: звідки одержимо - неправильно. Це тому, що не врахували відбиття від торців; правильно буде записати:
40900. Відкриті резонатори 118.5 KB
  Тут не можна використовувати геометричні наближення потрібно розв’язувати рівняння Максвела. Розв’яжемо рівняння Максвела для сферичного діелектричного резонатора. Щоб отримати саме хвильове рівняння де була б ще й похідна необхідно зробити заміну: . Розв’яжемо простіше рівняння для та методом відокремлених змінних: тоді .
40901. Метод магнітної стінки 112.5 KB
  Обернена ситуація – хвиля виходить з металу або діелектрика в вакуум. Зліва – стояча хвиля справа – біжуча звичайна зі сталою амплітудою. вакуум метал Пряма хвиля ідбита хвиля Граничні умови:.
40902. Ортогональність власних хвиль у хвильоводі 125.5 KB
  Запишемо лему Лоренца для цього випадку. ( - стала розповсюдження.) У вигляді хвилі візьмемо властивість хвилі у хвильоводі: ; - позначення. бо розглядаємо власні хвилі і зовнішніх струмів немає.
40903. Збудження обємних резонаторів 136.5 KB
  Таким чином маємо ортонормованість власних функцій резонатора з нормою яку легко знайти. Таким чином МП – псевдовектор ЕП – вектор. Таким чином для гармонічних полів: . Таким чином довели строге рівняння Пуансона для електростатичної частини полів.
40904. Неоднорідності у хвильоводі 151 KB
  Таким чином ми розв’язали рівняння Максвела, не розв’язуючи їх. (Зауваження: ми не враховували електростатичних полів). Тепер зашиємо розв’язки справа та зліва, наклавши граничні умови при (всі поля повинні бути неперервні)
40905. Струми і напруги в техніці НВЧ 139 KB
  Опір хвильовода теж можна визначити порізному: . Таким чином повний опір залежить від координат. Опір в точці в точці навантаження: . Якщо тобто ми розглянули точку знаходження навантаження маємо опір .