32723

Изотермы Ван-дер-Ваальса и их сопоставление с реальными изотермами. Критическая температура. Внутренняя энергия газа Ван-дер-Ваальса

Доклад

Физика

Изотермы ВандерВаальса и их сопоставление с реальными изотермами. Внутренняя энергия газа ВандерВаальса. Изотермы ВандерВаальса Проанализируем изотермы уравнения ВандерВаальса зависимости Р от V для реального газа при постоянной температуре. Умножив уравнение ВандерВаальса на V 2 и раскрыв скобки получаем PV 3 RT bP vV 2 v2V bv3 = 0.

Русский

2013-09-05

81 KB

26 чел.

55.Изотермы Ван-дер-Ваальса и их сопоставление с реальными изотермами. Критическая температура. Внутренняя энергия газа Ван-дер-Ваальса.

Изотермы Ван-дер-Ваальса

       Проанализируем изотермы уравнения Ван–дер–Ваальса – зависимости Р от V для реального газа при постоянной температуре. Умножив уравнение Ван-дер-Ваальса на V 2 и раскрыв скобки, получаем

       PV 3 – (RT + bP) vV 2 + av2V - abv3 = 0. 

       Поскольку данное уравнение имеет третью степень относительно V, а коэффициенты при V действительны, то оно имеет либо один, либо три вещественных корня, т.е. изобара Р = const пересекает кривую Р = Р(V) в одной или трех точках, как это изображено на рисунке 7.4. Причем с повышением температуры мы перейдем от немонотонной зависимости Р = Р(V) к монотонной однозначной функции. Изотерма при Ткр, которая разделяет немонотонные T < Tкр и монотонные T > Ткр изотермы, соответствует изотерме при критической температуре. При температуре выше критической зависимость Р = Р(V) является однозначной монотонной функцией объема. Это означает, что при T > Ткр вещество находится только в одном, газообразном состоянии, как это имело место у идеального газа. При температуре газа ниже критической такая однозначность исчезает, а это означает возможность перехода вещества из газообразного в жидкое и наоборот. На участке АСВ изотермы Т1 давление растет с увеличением объема (dP/dV) > 0. Данное состояние неустойчиво, поскольку здесь должны усиливаться малейшие флуктуации плотности. Поэтому область ВСА не может устойчиво существовать. В областях DLB и AGE давление падает с увеличением объема (dP/dV)Т < 0 – это необходимое, но не достаточное условие устойчивого равновесия. Эксперимент показывает, что система переходит из области устойчивых состояний GE (газ) в область устойчивых состояний LD (жидкость) через двухфазное состояние (газ – жидкость) GL вдоль горизонтальной изотермы GCL.

       При квазистатическом сжатии, начиная с точки G, система распадается на 2 фазы – жидкость и газ, причем плотности жидкости и газа остаются при сжатии неизменными и равными их значениям в точках L и G соответственно. При сжатии количество вещества в газообразной фазе непрерывно уменьшается, а в жидкой фазе – увеличивается, пока не будет достигнута точка L, в которой все вещество перейдет в жидкое состояние.


Рис. 7.4

       Наличие критической точки на изотерме Ван–дер–Ваальса означает, что для каждой жидкости существует такая температура, выше которой вещество может существовать только в газообразном состоянии. К этому заключению пришел и Д.И. Менделеев в 1861 г. Он заметил, что при определенной температуре прекращалось поднятие жидкости в капиллярах, т.е. поверхностное натяжение обращалось в нуль. При той же температуре обращалась в нуль скрытая теплота парообразования. Такую температуру Менделеев назвал температурой абсолютного кипения. Выше этой температуры, согласно Менделееву, газ не может быть сконденсирован в жидкость никаким увеличением давления.

       Критическую точку K мы определили как точку перегиба критической изотермы, в которой касательная к изотерме горизонтальна (рис. 7.5). Ее можно определить также как точку, в которую в пределе переходят горизонтальные участки изотерм при повышении температуры до критической. На этом основан способ определения критических параметров Pk, Vk, Тk, принадлежащий Эндрюсу. Строится система изотерм при различных температурах. Предельная изотерма, у которой горизонтальный участок LG (рис. 7.4) переходит в точку, будет критической изотермой, а указанная точка – критической точкой (рис. 7.5).


Рис. 7.5

       Недостаток способа Эндрюса заключается в его громоздкости.

Критическая температура, 1) температура вещества в его критическом состоянии. Для индивидуальных веществ Критическая температура определяется как температура, при которой исчезают различия в физических свойствах между жидкостью и паром, находящимися в равновесии. При Критическая температура плотности насыщенного пара и жидкости становятся одинаковыми, граница между ними исчезает, и теплота парообразования обращается в нуль. К. т. - одна из неизменяющихся характеристик (констант) вещества. Значения Критическая температура Tk некоторых веществ приведены в ст. Критическая точка.
В двойных системах (например, пропан - изопентан) равновесие жидкость - пар имеет не одну
Критическая температура, а пространственную критическую кривую, крайними точками которой являются Критическая температура чистых компонентов.
2) температура, при которой в
жидких смесях с ограниченно растворимыми компонентами наступает их взаимная неограниченная растворимость; её называют Критическая температура растворимости.
3) температура перехода ряда проводников в сверхпроводящее состояние (см.
Сверхпроводимость). Измерена у большого числа металлов, сплавов и химических соединений. В чистых металлах наинизшая Критическая температура наблюдается у Ti (0,37 К), самая высокая - у Тс (11,2 К). Очень высокое значение Критическая температура найдено у сплава Nb, Al и Ge (Tk»21 К).

Внутренняя энергия газа Ван-дер-Ваальса

Энергия одного моля газа Ван–дер–Ваальса слагается из внутренней энергии молекул, составляющих газ: кинетической энергии теплового движения центра масс молекул , равной , и потенциальной энергии взаимного притяжения молекул.

Потенциальная энергия притяжения молекул равна работе, необходимой для разведения молекул на бесконечное расстояние друг от друга. В этом конечном состоянии молекулы не взаимодействуют друг с другом, а потенциальную энергию можно считать равной нулю. Дополнительное давление газа Ван-дер-Ваальса за счет взаимного притяжения молекул равно a/Vm2 и, следовательно, потенциальная энергия взаимодействия равна:

.

Знак «минус» указывает на то, что между молекулами действуют силы притяжения; Vm – молярный объем, Vm = V/µ, v = m/m.

       Полная энергия одного моля газа Ван-дер-Ваальса определяется соотношением

.

Если СV не зависит от температуры, то имеем для одного моля

Um = CV Т– a/Vm. 

 Причиной недостаточной точности уравнения Ван–дер–Ваальс считал ассоциацию молекул в газовой фазе, которую не удается описать, учитывая зависимость параметров a и b от объема и температуры, без использования дополнительных постоянных. После 1873 г. сам Ван–дер–Ваальс предложил еще шесть вариантов своего уравнения, последнее из которых относится к 1911 г. и содержит пять эмпирических постоянных. Две модификации уравнения предложил Клаузиус, и обе они связаны с усложнением вида постоянной b. Больцман получил три уравнения этого типа, изменяя выражения для постоянной a. Всего известно более сотни подобных уравнений, отличающихся числом эмпирических постоянных, степенью точности и областью применимости. Выяснилось, что ни одно из уравнений состояния, содержащих менее 5 индивидуальных постоянных, не оказалось достаточно точным для описания реальных газов в широком диапазоне Р, V, T, и все эти уравнения оказались непригодными в области конденсации газов. Из простых уравнений с двумя индивидуальными параметрами неплохие результаты дают уравнения Дитеричи и Бертло.

Принципиальное значение уравнения Ван–дер–Ваальса определяется следующими обстоятельствами:

уравнение было получено из модельных представлений о свойствах реальных газов и жидкостей, а не явилось результатом эмпирического подбора функции f(p,V,T), описывающей свойства реальных газов;

уравнение долго рассматривалось как некоторый общий вид уравнения состояния реальных газов, на основе которого было построено много других уравнений состояния;

с помощью уравнения Ван–дер–Ваальса впервые удалось описать явление перехода газа в жидкость и проанализировать критические явления. В этом отношении уравнение Ван–дер–Ваальса имеет преимущество даже перед более точными уравнениями в вириальной форме.


 

А также другие работы, которые могут Вас заинтересовать

60112. Виховний захід «Миколай святий іде, подарунки всім несе!» 47 KB
  Увага Дітвора У нас чудова новина До казки просимо усіх Де вас чекають жарти й сміх Сьогодні в нас казкове свято Гостей запрошено багато Уучень. Летить сніжок Легесенький кружляє Безшумно осідає він на все...
60114. Виховний захід до річниці визволення Києва та України від німецько-фашистських загарбників 55 KB
  Мета: 1. Показати героїзм визволителів Києва та України. на території України; окупацію України; голокост; битву за Дніпро та визволення Києва від окупантів. Обладнання: проектор на сцені надпис Київ 1941-1943 фотографії Києва часів війни та подій повязаних із визволенням столиці.
60115. НАША ДРУЖНАЯ СЕМЬЯ 58.5 KB
  Время вроде замкнутого круга: Год мелькнул как месяц день как час. Я рада что все вы откликнулись и решили принять участие в конкурсе Мама папа я - дружная семья. Рада приветствовать вас на нашем семейном развлечении Наша дружная семья.
60116. Виховний захід: «Моя Батьківщина – Україна» 59 KB
  Мова кожного народу неповторна і своя це рядки з вірша. Українська мова Давня й молода. Рідна мова як її не знати Як же не любити нам її. Рідна мова в рідній школі Що бринить нам чарівніш Що нам ближче і миліш І дорожче в час недолі Рідна мова...
60117. Позакласний захід з народознавства «Обжинки» 33 KB
  Учні: Ой обжинки господарю обжинки Позбирали колосочки із нивки Ой весело господарю весело Що ми тобі віночок несемо А ще буде веселіш Коли буде цей вінок на голові Коли буде коровай на столі Діти виконують пісню з рухами...
60118. Здоров’я – це скарб. Усний журнал 85 KB
  Мета: вчити здорового способу життя свідома ставитися до свого здоровя; розвивати бажання вести активний спосіб життя берегти зміцнювати здоровя; виховувати хороші звички бажання перетворити набуті знання у внутрішню потребу.
60119. Виховний захід: З усмішкою про наше шкільне життя 47 KB
  Я книжки закинув та й не вчився Телевізор цілий день дивився Ось стою зітхаю нічого не знаю Двійку заробив 1 учень Оце лихо Іване А що ж у тебе вчителька таке спитала 2 учень Таблицю множення скільки буде...
60120. Внеклассная работа. «Выпускной бал в 4 классе» 68 KB
  Цель: подвести итоги обучения за 4 года в начальной школе мотивировать учащихся на дальнейшее успешное обучение. Рады мама с бабушкой папа мой доволен И самой мне нравится в нашей милой школе.