32725

Понятие фазы. Фазовые переходы 1 и 2 рода. Фазовые диаграммы. Тройная точка

Доклад

Физика

Понятие фазы. В однокомпонентной системе разные фазы могут быть представлены различными агрегатными состояниями или разными полиморфными модификациями вещества. В многокомпонентной системе фазы могут иметь различный состав и структуру. Основные понятия Газ всегда состоит из одной фазы жидкость может состоять из нескольких жидких фаз разного состава Ликвация жидкостная несмешиваемость но двух разных жидкостей одного состава в равновесии сосуществовать не может.

Русский

2013-09-05

57 KB

123 чел.

57.Понятие фазы. Фазовые переходы 1 и 2 рода. Фазовые диаграммы. Тройная точка.

Термодинамическая фаза — термодинамически однородная по составу и свойствам часть термодинамической системы, отделенная от других фаз поверхностями раздела, на которых скачком изменяются некоторые свойства системы. Другое определение: Фаза — гомогенная часть гетерогенной системы. В однокомпонентной системе разные фазы могут быть представлены различными агрегатными состояниями или разными полиморфными модификациями вещества. В многокомпонентной системе фазы могут иметь различный состав и структуру.

Основные понятия

Газ всегда состоит из одной фазы, жидкость может состоять из нескольких жидких фаз разного состава (Ликвация, жидкостная несмешиваемость), но двух разных жидкостей одного состава в равновесии сосуществовать не может. Вещество в твердом состоянии может состоять из нескольких фаз, причем некоторые из них могут иметь одинаковый состав, но различную структуру (полиморфные модификации, аллотропия).

Разные фазы обладают различными вариантами упаковки молекул (для кристаллических фаз, различными кристаллическими решетками), и, следовательно, своими характерными значениями коэффициента сжимаемости, коэффициента теплового расширения и прочими характеристиками. Кроме того, различные фазы могут обладать разными электрическими (сегнетоэлектрики), магнитными (ферромагнетики), и оптическими свойствами (например, твёрдый кислород).

Термодинамические фазы на фазовой диаграмме





Типичные виды фазовых диаграмм. Зелёная линия из точек показывает аномальное поведение воды

На фазовой диаграмме вещества различные термодинамические фазы занимают определённые области. Линии, разделяющие различные термодинамические фазы, называются линиями фазового перехода. Если вещество находится в условиях, отвечающих точке внутри какой-либо области, то оно полностью находится в этой термодинамической фазе. Если же состояние вещества отвечает точке на одной из линий фазовых переходов, то вещество в термодинамическом равновесии может находиться частично в одной, а частично в другой фазе. Пропорция двух фаз определяется, как правило, полной энергией, запасённой системой.

При медленном (адиабатическом) изменении давления или температуры вещество описывается движущейся точкой на фазовой диаграмме. Если эта точка в своём движении пересекает одну из линий, разделяющих термодинамические фазы, происходит фазовый переход, при котором физические свойства вещества меняются скачкообразно.

Не все фазы полностью отделены друг от друга линией фазового перехода. В некоторых случаях эта линия может обрываться, оканчиваясь критической точкой. В этом случае возможен постепенный, а не скачкообразный переход из одной фазы в другую, в обход линии фазовых переходов.

Точка на фазовой диаграмме, где сходятся три линии фазовых переходов, называется тройной точкой. Обычно под тройной точкой вещества подразумевается частный случай, когда сходятся линии плавления, кипения и сублимации, однако на достаточно богатых фазовых диаграммах может быть несколько тройных точек. Вещество в тройной точке в состоянии термодинамического равновесия может частично находиться во всех трёх фазах. На многомерных фазовых диаграммах (то есть если кроме температуры и давления присутствуют иные интенсивные величины) могут существовать четверные и т. д. точки.

Термодинамические фазы и агрегатные состояния вещества

Набор термодинамических фаз вещества обычно значительно богаче набора агрегатных состояний, т.е. одно и то же агрегатное состояние вещества может находиться в различных термодинамических фазах. Именно поэтому описание вещества в терминах агрегатных состояний довольно огрублённое, и оно не может различить некоторые физические разные ситуации.

Богатый набор термодинамических фаз связан, как правило, с различными вариантами порядка, которые допускаются в том или ином агрегатном состоянии.

В газообразном состоянии вещество не обладает никаким порядком. Соответственно, в газообразном состоянии любое вещество обладает только одной термодинамической фазой. (Фазовые переходы типа диссоциации молекул или ионизации являются, по определению, переходами одного вещества в другое).

Жидкость обладает ориентационным порядком, но, как правило, не обладает трансляционным порядком . В результате у одной и той же жидкости могут быть разные термодинамические фазы, однако количество их редко превышает единицу. Так, например, существование новой жидкой фазы обнаружено в переохлаждённой воде. Другой, специфический, пример: сверхтекучее состояние в жидком гелии.

Кристаллическое твёрдое тело обладает как трансляционным, так и ориентационным порядком. В результате даже возникает большое число возможных вариантов ориентации соседних молекул друг относительно друга, которые могут оказаться энергетически выгодными при тех или иных давлении и температуре. В результате твёрдые тела обладают, как правило, достаточно сложной фазовой диаграммой.

Классификация фазовых переходов

При фазовом переходе первого рода скачкообразно изменяются самые главные, первичные экстенсивные параметры: удельный объём (т.е. плотность), количество запасённой внутренней энергии, концентрация компонентов и т. п. Подчеркнём: имеется в виду скачкообразное изменение этих величин при изменении температуры, давления и т. п., а не скачкообразное изменение во времени (насчёт последнего см. ниже раздел Динамика фазовых переходов).

Наиболее распространённые примеры фазовых переходов первого рода:

плавление и затвердевание, кипение и конденсация, сублимация и десублимация

При фазовом переходе второго рода плотность и внутренняя энергия не меняются, так что невооружённым глазом такой фазовый переход может быть незаметен. Скачок же испытывают их вторые производные по температуре и давлению: теплоёмкость, коэффициент теплового расширения, различные восприимчивости и т. д.

Фазовые переходы второго рода происходят в тех случаях, когда меняется симметрия строения вещества (симметрия может полностью исчезнуть или понизиться). Описание фазового перехода второго рода как следствие изменения симметрии даётся теорией Ландау. В настоящее время принято говорить не об изменении симметрии, но о появлении в точке перехода параметра порядка, равного нулю в менее упорядоченной фазе и изменяющегося от нуля (в точке перехода) до ненулевых значений в более упорядоченной фазе.

Наиболее распространённые примеры фазовых переходов второго рода:

прохождение системы через критическую точку

переход парамагнетик-ферромагнетик или парамагнетик-антиферромагнетик (параметр порядканамагниченность)

переход металлов и сплавов в состояние сверхпроводимости (параметр порядка — плотность сверхпроводящего конденсата)

переход жидкого гелия в сверхтекучее состояние (п.п. — плотность сверхтекучей компоненты)

переход аморфных материалов в стеклообразное состояние

Современная физика исследует также системы, обладающие фазовыми переходами третьего или более высокого рода.

В последнее время широкое распространение получило понятие квантовый фазовый переход, т.е. фазовый переход, управляемый не классическими тепловыми флуктуациями, а квантовыми, которые существуют даже при абсолютном нуле температур, где классический фазовый переход не может реализоваться вследствие теоремы Нернста.

Тройная точка — точка на фазовой диаграмме, где сходятся три линии фазовых переходов. Тройная точка — это одна из характеристик химического вещества. Обычно тройная точка определяется значением температуры и давления, при котором вещество может равновесно находится в трёх (отсюда и название) агрегатных состояниях — твёрдом, жидком и газообразном. В этой точке сходятся линии плавления, кипения и сублимации.

В более общем случае могут рассматриваться и другие фазы вещества, не соответствующие различным агрегатным состояниям. На достаточно богатых фазовых диаграммах может быть несколько тройных точек. Вещество в тройной точке в состоянии термодинамического равновесия может частично находиться во всех трёх фазах. На многомерных фазовых диаграммах (то есть если кроме температуры и давления присутствуют иные интенсивные величины) могут существовать четверные и т. д. точки.


 

А также другие работы, которые могут Вас заинтересовать

50819. Построение и экспериментальная проверка статической характеристики замкнутой системы 868 KB
  Освоить методику аналитического построения статической характеристики замкнутой САР по статическим характеристикам отдельных элементов. Под статической характеристикой замкнутой САР понимают функциональную зависимость регулируемой величины от задающего и возмущающих воздействий снятую на установившихся режимах. Если регулируемая величина на установившемся режиме не зависит от возмущающих воздействий то такая система называется астатической а если зависит то статической.
50820. Определение теплоёмкости методом Клемана и Дезорма 58.5 KB
  Эта величина, в частности, определяет скорость распространения звука в газах; от неё зависит течение газов по трубам со звуковыми скоростями и достижение сверхзвуковых скоростей в трубах, сначала суживающихся, а затем резко расширяющихся (сопла Лаваля). Основная идея метода Клемана и Дезорма состоит в следующем.
50821. DHTML и JavaScript на web-страницах 560 KB
  Цель работы: ознакомиться с основными возможностями языка JavaScript, синтаксисом, встроенными объектами, событиями DHTML, получить практические навыки программирования на языке JavaScript.
50822. Экспериментальное определение характеристик объекта регулирования, выбор закона регулирования и расчет параметров настроек регулятора 804 KB
  Изучить инженерный метод выбора закона регулирования и расчета параметров настроек регуляторов непрерывного действия. Характеристики объектов регулирования Большинство промышленных объектов можно представить в виде элементов которые являются аккумуляторами вещества или энергии. Динамические и статические свойства объекта регулирования описываются дифференциальными уравнениями.
50823. Скриптовый язык программирования PHP 298 KB
  Он может также использоваться для создания изображений и манипуляций с файлами изображений различных форматов включая gif png jpg wbmp и xpm. Обратите внимание что здесь предполагается использование имени...
50824. Проектирование салона швейного предприятия сервиса 156 KB
  Рассчитать численность работающих и площадь салона.Согласно варианту задания дать краткую характеристику приемного салона по зонам.1 Исходные данные для проектирования салона Таблица 4.
50825. Имитационное моделирование. Разработка модели системы массового обслуживания в Arene 807.5 KB
  Практическая часть Исходные данные для рассмотренного в практической части примера: В салон по сборке компьютеров со среднем временем в 15 минут приходит 1 клиент что определяется по экспоненциальному закону чтобы выбрать компьютер ПК. Выбор ПК осуществляется в течении 1520 минут. Отдел по сборке системного блока осуществляет единичный заказ в течение 4050 минут в то время как отдел по подбору соответствующих монитора и периферийных устройств делает свой единичный заказ в течение 540 минут. Определить необходимое минимальное...
50826. Исследование влияния параметров настройки регулятора на качество процесса регулирования 38.5 KB
  Динамические свойства систем автоматического регулирования Требования предъявляемые к поведению стабилизирующих систем автоматического регулирования САР в динамике зависят от их назначения характера воздействий конкретных условий и т. Достаточным условием следует считать качество процесса регулирования которое оценивается видом переходных процессов и ошибками на установившихся режимах.14 рассмотрены показатели качества процесса регулирования: время регулирования tp перерегулирование σ статическая ошибка Δxs=δ остаточное отклонение...
50827. Взаимодействие PHP и MySQL. Механизмы сессий 144 KB
  Цель работы: ознакомиться с основными функциями PHP применяемыми для работы с MySQLсервером изучить и применить на практике механизмы сессий Основные понятия MySQL СУБД MySQL одна из множества баз данных поддерживаемых в PHP. Система MySQL распространяется бесплатно и обладает достаточной мощностью для решения реальных задач. Система MySQL представляет собой сервер к которому могут подключаться пользователи удаленных компьютеров.