32728

Скорость и ускорение при криволинейном движении. Тангенциальное и нормальное ускорения

Доклад

Физика

Криволинейное движение с постоянным ускорением всегда происходит в той плоскости в которой находятся векторы ускорения и начальные скорости точки. В случае криволинейного движения с постоянным ускорением в плоскости xOy проекции vxи vy ее скорости на оси Ox и Oy и координаты x и y точки в любой момент времени t определяется по формулам vx=v0xxt x=x0v0xtxtxt2 2; vy=v0yyt y=y0v0ytyt2 2 Частным случаем криволинейного движения является движение по окружности. Движение по окружности даже равномерное всегда есть движение...

Русский

2013-09-05

37 KB

71 чел.

3.Скорость и ускорение при криволинейном движении. Тангенциальное и нормальное ускорения.

Криволинейные движения – движения, траектории которых представляют собой не прямые, а кривые линии.

Криволинейное движение – это всегда движение с ускорением, даже если по модулю скорость постоянна. Криволинейное движение с постоянным ускорением всегда происходит в той плоскости, в которой находятся векторы ускорения и начальные скорости точки. В случае криволинейного движения с постоянным ускорением в плоскости xOy проекции vxи vy ее скорости на оси Ox и Oy и координаты x и  y точки в любой момент времени t определяется по формулам

vx=v0x+axt,  x=x0+v0xt+axt+axt2/2;  vy=v0y+ayt,  y=y0+v0yt+ayt2/2

Частным случаем криволинейного движения – является движение по окружности. Движение по окружности, даже равномерное, всегда есть движение ускоренное: модуль скорости все время направлен по касательной к траектории, постоянно меняет направление, поэтому движение по окружности всегда происходит с центростремительным ускорением  |a|=v2/rгде r – радиус окружности.

Вектор ускорения при движении по окружности направлен к центру окружности и перпендикулярно вектору скорости.

При криволинейном движении ускорение можно представить как сумму нормальной  и тангенциальной  составляющих: ,

 - нормальное (центростремительное) ускорение, направлено к центру кривизны траектории и характеризует изменение скорости по направлению:

v – мгновенное значение скорости,   r – радиус кривизна траектории в данной точке.

 - тангенциальное (касательное) ускорение, направлено по касательной к траектории и характеризует изменение скорости по модулю.

Полное ускорение, с которым движется материальная точка, равно:

Тангенциальное ускорение характеризует быстроту изменения скорости движения по численному значению и направлена по касательной к траектории.

Следовательно

Нормальное ускорение характеризует быстроту изменения скорости по направлению. Вычислим вектор:


 

А также другие работы, которые могут Вас заинтересовать

53902. Кути. Вимірювання кутів 42.5 KB
  Мета: закріпити знання учнів про зміст основних понять теми вивчених на попередньому уроці; продовжувати формувати навички учнів оперувати вивченими в темі поняттями для обґрунтування дій під час розвязування типових задач; використовуючи прийом аналогії та знання і вміння вироблені під час вивчення теми Відрізки сформувати вміння розвязувати типові задачі на застосування аксіом вимірювання та відкладання кутів; відпрацювати навички побудови кутів та їх вимірювання із використанням приладів. Наочність і...
53903. Сума кутів трикутника 46.5 KB
  Мета: сформулювати та довести теорему про суму кутів трикутника ознайомити учнів з поняттям зовнішнього кута трикутника розвивати навички практичної діяльності з геометричними інструментами відпрацьовувати вміння логічно мислити робити висновки. Побудувати трикутник за даними кутами 1 ряд 2 ряд 3 ряд  А = 38 0...
53904. Суміжні і вертикальні кути 322 KB
  Замислюйся міркуй питання занотуй. Познач кути між кольоровими променями і променями АВ і АС. Чи є на цьому малюнку кути що утворюють розгорнутий кут Побудуй на око: а кут який має градусну міру більше 00 але менше 900; б кут рівний 900; в кут більший 900 але менший за 1800.
53905. Суміжні кути 82 KB
  Мета: засвоїти означення суміжних кутів; вивчити формулювання та доведення теореми про суму суміжних кутів а також наслідки із цієї теореми; розвивати увагу логічне мислення просторову уяву; виховувати охайність працьовитість. Обладнання: Моделі кутів карткизавдання. І так ви відгадали що країна в яку ми повинні вирушити складається з кутів. Наше завдання: 1 відшукати там невідомий для нас вид кутів; 2 довести що сума цих кутів дорівнює 180; 3 встановити наслідки цього доведення.
53906. Квадратні корені 548.5 KB
  Після уроку учні зможуть: застосовувати теоретичний матеріал про квадратні корені до вирішення вправ; навчитися усвідомленому застосуванню вивченого матеріалу під час вирішення завдань; набути навичок роботи в малих групах; набути навичок логічних міркувань; формування мотивації здорового способу життя Використані технології: інтерактивні технології: Мікрофон Робота в малих групах. Робота в малих групах. Учні об'єднуються в групи по 4 особи 1 і 2 3 і 4 парти згадують правила роботи в групах...
53907. Розвязування квадратичних нерівностей методом інтервалів 57 KB
  Мета: ознайомити учнів з розвязанням квадратичних нерівностей методом інтервалів; формування уміння розвязувати квадратичні нерівності методом інтервалів. Виховувати охайність під час виконання малюнка.
53908. РЕШЕНИЕ КВАДРАТНЫХ УРАВНЕНИЙ 208 KB
  Какое уравнение называют квадратным уравнение вида ах2bxc=0 где х переменная а bс числа причем а≠0 числа а bс называются коэффициентами квадратного уравнения; а первый коэффициент b второй коэффициент с свободный член Например: 2х24х8=0 Какое квадратное уравнение называется приведенным Приведенным квадратным уравнением называется такое квадратное уравнение в котором первый коэффициент равен 1 т. а=1 Например: х23х10=0 Какое квадратное уравнение называется неполным Неполным квадратным уравнением...
53909. Квадратні рівняння 207 KB
  Мета уроку: формувати уміння розвязувати квадратні рівняння. Квадратні рівняння простіших видів вавилонської математики вміли розвязувати ще 4 тис. Згодом розвязували їх також: в Китаї і Греції. Він показав як розвязувати при додатних а і bрівняння видів .
53910. Розвязування квадратних рівнянь 181 KB
  Тема: Розвязування квадратних рівнянь. Мета: Узагальнити способи розвязування квадратних рівнянь формувати вміння і навики досліджувати і розвязувати квадратні рівняння розвивати пізнавальний інтерес цікавість увагу память. Сьогодні предметом дослідження на уроці буде тема Розвязування квадратних рівнянь і застосування різних способівâ€. Чому стільки часу відводиться для вивчення цієї теми Тому що багато задач економіки фізики зводяться до розвязування квадратних рівнянь.