3273

Исследование адаптивных систем с эталонной моделью.

Лабораторная работа

Физика

Исследование адаптивных систем с эталонной моделью. Цель работы: закрепить теоретические знания по синтезу адаптивных систем с эталонной моделью (ЭМ) и проверить их работоспособность с помощью моделирования на ПК. 1. Теоретическая часть. Необходимос...

Русский

2012-10-28

64.33 KB

110 чел.

Исследование адаптивных систем с эталонной моделью.

Цель работы: закрепить теоретические знания по синтезу адаптивных систем с эталонной моделью (ЭМ) и проверить их работоспособность с помощью моделирования на ПК.

1. Теоретическая часть.

Необходимость использования класса адаптивных систем возникает в тех случаях, когда либо имеется априорная неопределенность при математическом описании объекта управления, либо характеристики объекта с течением времени изменяются в той или иной мере.

Наиболее распространенным классом адаптивных систем являются беспоисковые самонастраивающиеся системы (СНС), поскольку они просто реализуются, обеспечивают достаточно быструю адаптацию и не требуют пробных воздействий на объект. Причем особый интерес представляют СНС с эталонной моделью, строящиеся на основе информации о выходах системы и модели. Это объясняется тем, что желаемые показатели качества системы управления заранее заложены в ЭМ, и в процессе функционирования путем соответствующей настройки параметров регулятора можно добиться устранения отклонения реальной системы и модели.

Рассмотрим обобщенную схему СНС с явной ЭМ, представленную на рис. 1.1,

               Рис. 1.1

где ОУ - объект управления, ЭМ - эталонная модель, УУ - устройство управления, УСНС - устройство самонастройки.

В данной системе разность между состояниями ОУ и ЭМ в каждый момент времени характеризует отклонение между действительным и желаемым качествами. Вектор ошибки = x - xM используется для изменения параметров УУ. Алгоритмы их настройки формируются в УСНС.

Поскольку ограничение ошибки  можно интерпретировать как признак устойчивости адаптивной системы, то структуру УСНС обычно выбирают из условия устойчивости по Ляпунову [ 1 ].

Сущность этого метода заключается в  следующем. САУ описывается совокупностью уравнений в отклонениях вида

fi(1, 2, …, n, t),    i = 1...n          (1.1).

Если можно подобрать такую знакоопределенную функцию Ляпунова  V(1, 2, ... , n), полная производная dV/dt от которой в некоторой области R ее аргументов i окажется знакопостоянной функцией, причем противоположного функции V знака, то система будет устойчива при всех начальных отклонениях, принадлежащих R, т.е. функции i(t) будут ограниченными.

Если dV/dt окажется знакоопределенной функцией противоположного V знака, то система в области R окажется асимптотически устойчивой и отклонения i(t) с течением времени будут стремиться к нулю.

Рассмотрим особенности синтеза алгоритмов самонастройки на основе второго метода Ляпунова, ограничившись адаптивными системами не выше второго порядка. Для систем высших порядков соответствующие доказательства представлены в [ 1 ].

2. Расчетная часть.

2.1 АСЭМ первого порядка.

В данной работе исследуется система, в которой передаточная функция объекта управления:

,         (2.1)

где T = const - известная постоянная времени, K(t) - медленно изменяющийся случайным образом коэффициент передачи. Поскольку желаемым значением этого коэффициента является KЖ, то в качестве ЭМ целесообразно принять систему вида:

.              (2.2)

Используя ошибку рассогласования

,         (2.3)

можно определить сигнал коррекции  удовлетворяющий условию в идеале

, т.е.         

(2.4)

 

Сформулируем постановку задачи синтеза алгоритма настройки   для СНС, представленной на рис. 2.1,

Рис. 2.1

Когда Т = 1 с и KЖ = 1.

Дано математическое описание ОУ и ЭМ  в виде:

  

    (2.5)

 

             (2.5)

Требуется найти алгоритм самонастройки ’(t), чтобы выполнялось

условие асимптотической устойчивости:

(2.6)

и асимптотической сходимости настроечного параметра к желаемому значению:

          

.                  (2.7)

Воспользуемся вторым методом Ляпунова.  Для этого запишем систему (2.5)  относительно ошибки (2.3)

       

,           (2.8)

а функцию Ляпунова выберем в виде:

        ,         (2.9)

где r > 0, qK > 0.

Следует  обратить  внимание на то,  что V = 0  при  = 0,  X = XЖ и V > 0  во всех остальных случаях.

     

.

Подставив в последнее уравнение выражение для d / dt (2.8),  получим

 

.   (2.10)

Функция dV / dt  будет отрицательно определенной, если учитывая отрицательную определенность первого члена в (2.10),  приравнять к нулю оставшуюся часть:

.

С учетом выражения (2.5), получим:

       

.    Тогда

        (2.11)

 и

.

Имеет место интегральный алгоритм  самонастройки (2.11). При = 0  d/dt = 0  и полученные к данному моменту значения  сохраняются. В случае,  когда   = Ж  в адаптации нет необходимости.  Параметры r > 0 и qK > 0 можно задавать произвольно, однако система всегда будет устойчива.

3. Задание по выполнению работы.

  1.  Синтезировать СНС с эталонной моделью по исходным данным, представленным в таблице

№ вар.

Т (с)

КЖ

U

1

0,1

5

2

2

1,0

1

1

3

0,5

1,5

1,5

4

0,01

1

2

5

2

0,5

1

6

10

1

2,5

  1.  Построить структурную схему синтезированной адаптивной системы.
  2.  Для  U = U0 = const  (таблица)  и  малых  значениях K в                    K = KЖ+K осуществить проверку работоспособности разработанной адаптивной системы с помощью компьютерного моделирования (при таких условиях ее можно моделировать как линейную). Построить графики x(t),  xM(t),  (t) и (t).
  3.  Исследовать влияние параметров r и q на показатели качества системы. Определить оптимальные значения r и q для вашего варианта.
  4.  Определить влияние входного сигнала U на работоспособность системы.

4. Требования к отчету.

Отчет должен содержать постановку задачи синтеза адаптивной системы с ЭМ в соответствии с вариантом, ее решение в общем виде и с учетом вычисленных значений, структурную схему синтезированной системы, листинг программы компьютерного моделирования, его результаты, а также заключение по работе.

5. Вопросы к предварительному собеседованию.

  1.  Что такое адаптивные системы?
  2.  В каких случаях целесообразно использовать адаптивное управление?
  3.  Какие классы адаптивных систем вам известны?
  4.  Что такое СНС?
  5.  Что такое эталонная модель?
  6.  Чем отличается явная ЭМ от неявной?
  7.  В чем сущность второго метода Ляпунова?
  8.  Как сформулировать постановку задачи синтеза СНС с явной эталонной моделью?

6. Вопросы к отчету по работе.

  1.  Как влияют коэффициенты r и q на качество работы СНС с ЭМ?
  2.  Как влияет входной сигнал на работоспособность синтезированной системы?
  3.  Какие численные методы можно использовать при компьютерном моделировании разработанной системы?
  4.  Осуществить сравнительный анализ возможностей известных математических пакетов программ по моделированию систем такого класса при увеличении их порядка.

7. Список рекомендуемой литературы.

  1.  Чураков Е.П.  Оптимальные и адаптивные системы: учебное пособие для ВУЗов. – М.: Энергоатомиздат, 1987.
  2.  Александров А.Г.  Оптимальные и адаптивные системы: учебное пособие для ВУЗов. – М.: Высшая школа, 1989.
  3.  Фомин В.Н., Фрадков А.Л., Якубович В.Л.  Адаптивное управление динамическими объектами. – М.: Наука, 1981.
  4.  Громыко В.Д., Санковский Е.А.  Самонастраивающиеся системы с моделью. – М.: Энергия, 1974.

 

А также другие работы, которые могут Вас заинтересовать

74240. Возбудители гнойно - воспалительных процессов. Стафилококки 717 KB
  Подавляющее большинство гнойно - воспалительных заболеваний вызывают кокки, т.е. имеющие сферическую (шаровидную) форму микроорганизмы. Их делят на две большие группы - грамположительные и грамотрицательные. Внутри этих групп выделяют аэробные и факультативно - анаэробные кокки и анаэробные кокки.
74241. История развития микробиологии, вирусологии и иммунологии. Предмет, методы, задачи 547 KB
  По наличию и строению клеток вся живая природа может быть разделена на прокариоты не имеющие истинного ядра эукариоты имеющие ядро и не имеющие клеточного строения формы жизни. Колония видимая изолированная структура при размножении бактерий на плотных питательных средах может развиваться из одной или нескольких родительских клеток. Деление этих микроорганизмов происходит в одной плоскости образуются пары клеток. Деление в трех взаимоперпендикулярных плоскостях образуя тюки пакеты из 8 16 и большего количества клеток.
74242. ОСНОВЫ АЛГОРИТМИЗАЦИИ 592.5 KB
  В основе любой программы лежит алгоритм. Таблица Изображение блоков в схемах алгоритмов Наименование символа Обозначениеи размеры Функция Процессвычислительный блок Выполнение операции или группы операций в результате которых изменяются значение форма представления или расположение данных Решение логический блок Выбор направления выполнения алгоритма в зависимости от некоторых условий Модификация заголовок цикла Выполнение операций по управлению циклом повторением команды или группы команд алгоритма Пускостанов началоконец...
74243. Алгоритмы вычисления определенных интегралов 1.27 MB
  Основу численных методов вычисления определенных интегралов составляет их геометрический смысл. В этом случае подынтегральную функцию кривую заменяют прямой а формула для вычисления площади прямоугольника известна. приведена схема алгоритма реализующего вычисления по формуле прямоугольников слева.
74244. Базы данных и их классификация 158 KB
  База данных это совокупность связанных данных организованных по определенным правилам предусматривающим общие принципы описания хранения и манипулирования независимая от прикладных программ.
74245. ВЫЧИСЛИТЕЛЬНЫЕ СЕТИ 280 KB
  Структура вычислительной сети Узел это любое устройство непосредственно подключенное к передающей среде сети. Каждый узел в сети имеет минимум два адреса: физический используемый оборудованием и логический используемый пользователями и приложениями. Здесь сообщение это целостная последовательность данных передаваемых по сети.
74246. Объектно-ориентированное программирование. Теоретические основы ООП 372.5 KB
  В основе любого языка лежит некоторая идея, оказывающая существенное влияние на стиль программ. Исторически первой была идея процедурного программирования.
74247. Технические средства ЭВМ 138.49 KB
  В основе функционирования любой ЭВМ лежит архитектура. В современных ЭВМ АЛУ и УУ объединены в общее устройство называемое центральным процессором. Схема архитектуры ЭВМ базирующаяся на принципах фон Неймана.
74248. Программное обеспечение ЭВМ и информационные технологии 199.8 KB
  Сообщение это форма представления информации для ее последующей передачи в одном из следующих видов: числовая форма представленная цифрами; текстовая форма представленная текстами составленными из символов того или иного языка; кодовая форма представленная кодами; например кодами в двоичной системе счисления кодами для сжатия или шифрования кодами азбуки Морзе или азбуки для глухонемых и т. Системы счисления Система счисления это соглашение о представлении чисел посредством конечной совокупности символов цифр...