32739

Закон всемирного тяготения. Гравитационное поле и его характеристики. Потенциал поля. Связь между потенциалом и напряжённостью поля. Космические скорости

Доклад

Физика

Потенциал поля. Связь между потенциалом и напряжённостью поля. В виде формулы это записывается так: F=Gm1m2 r2 где G гравитационная константа определяемая экспериментально 667 × 1011 Нм2 кг2 ГРАВИТАЦИОННОЕ ПОЛЕ поле тяготения один из видов поля физического посредством которого осуществляется гравитационное взаимодействие притяжение тел. Об интенсивности гравитационного поля очевидно можно судить по величине силы действующей в данной точке на тело с массой равной единице.

Русский

2013-09-05

42.5 KB

54 чел.

14.Закон всемирного тяготения. Гравитационное поле и его характеристики. Потенциал поля. Связь между потенциалом и напряжённостью поля. Космические скорости.

Закон всемирного тяготения был открыт англичанином И. Ньютоном в 1666г. Закон звучит следующим образом: сила гравитационного притяжения двух материальных точек прямо пропорциональна произведению их масс и обратно пропорциональна квадрату расстояния между ними. В виде формулы это записывается так: F=G*m1*m2/r2  где G — гравитационная константа, определяемая экспериментально 6,67 × 10–11 Н·м2/кг2

ГРАВИТАЦИОННОЕ ПОЛЕ (поле тяготения), один из видов поля физического, посредством которого осуществляется гравитационное взаимодействие (притяжение) тел.

Гравитационное взаимодействие осуществляется через гравитационное поле. Всякое тело изменяет свойства окружающего его пространства — создает в нем гравитационное поле. Это поле проявляет себя в том, что помещенное в него другое тело оказывается под действием силы. Об «интенсивности» гравитационного поля, очевидно, можно судить по величине силы, действующей в данной точке на тело с массой, равной единице. В соответствии с этим величину называют Напряженностью гравитационного поля.

G=F/m

Величину  φ=U/m’ называют потенциалом гравитационного поля. В этой формуле U есть потенциальная энергия, которой обладает материальная точка массы m’ в данной точке поля.

Потенциал – скалярная величина, поэтому пользоваться и вычислять φ проще, чем .

Формулу можно использовать для установления единиц потенциала: за единицу φ принимают потенциал в такой точке поля, для перемещения в которую из бесконечности единичного положительного заряда необходимо совершить работу равную единице.

В физике часто используется единица энергии и работы, называемая электрон - вольт (эВ) – это работа, совершенная силами поля над зарядом, равным заряду электрона при прохождении им разности потенциалов 1 В.

Первая космическая скорость

Для осуществления равномерного движения по окружности радиуса r его горизонтально направленная скорость должна иметь такое значение v, при котором центростремительное ускорение равно ускорению свободного падения

(1).
Из (1) следует:
(2).
Скорость V, при которой тело может двигаться по круговой орбите вокруг Земли, называется первой космической скоростью.
Из формулы (2) для значения r, равного радиусу Земли, r = 6371 км, первая космическая скорость равна

V = 7.9*10
3 м/с
При начальной скорости меньше 7,9 км/с тело, брошенное горизонтально, пролетев некоторое расстояние, упадет на поверхность Земли. При скорости 7,9 км/с в отсутствии воздуха оно будет двигаться вокруг Земли по окружности, став ее искусственным спутником.
Вторая космическая скорость
При небольшом превышении первой космической скорости орбита спутника будет эллиптической, а при достижении скорости 11,2 км/с превращается в параболу, ветви которой уходят в бесконечность.
Скорость, при которой тело способно преодолеть действия сил притяжения небесного тела и удалиться от него на бесконечно далекое расстояние, называется второй космической скоростью.
Из формулы (2) следует, что для вычисления первой космической скорости на расстоянии r от любого небесного тела, звезды или планеты, нужно знать ускорения a свободного падения на этом расстоянии от центра масс небесного тела. Небесное тело массой M действует на другое тело массой m на расстоянии r силой всемирного тяготения F.
Следовательно, ускорение свободного падения тела на этом расстоянии равно
(3).

Из (2) и (3) первая космическая скорость V на расстоянии r от центра небесного тела массой M равна:

(4).
Формула (4) позволяет вычислять массы небесных тел, вокруг которых обращаются другие небесные тела под действием сил всемирного тяготения.
Массу M Солнца можно найти по известным значениям скорости V движениям Земли по ее орбите и радиусу r земной орбиты:


Скорость V движения Земли по орбите можно найти, зная радиус r земной орбиты и период Т ее обращения вокруг Солнца:

Для вычисления массы Солнца получаем формулу:
(5).
Выразим период обращения Земли вокруг Солнца в единицах СИ:

T = 1 год = 3.16*10
7 с
Подставим числовые значения величин, найдем массу Солнца:
M = 2*10
30 к
Из формулы (5) следует, что для всех спутников, обращающихся по круговым орбитам вокруг одной планеты, или для всех планет, обращающихся вокруг одной звезды, отношение квадратов периодов обращения к кубам радиусов орбит является величиной одинаковой
(6).
Равенство (6) выполняется и в случае движения спутников или планет по эллиптическим орбитам, если использовать как r большие полуоси эллипсов.
Третий закон Кеплера
Факт, что квадраты периодов обращения планет вокруг Солнца относятся как кубы больших полуосей их эллиптических орбит, был открыт Иоганном Кеплером и называется третьим законом Кеплера:
(7).


 

А также другие работы, которые могут Вас заинтересовать

16525. ИССЛЕДОВАНИЕ ХАРАКТЕРИСТИК И ПАРАМЕТРОВ ПОЛЕВЫХ ТРАНЗИСТОРОВ 202.94 KB
  ИССЛЕДОВАНИЕ ХАРАКТЕРИСТИК И ПАРАМЕТРОВ ПОЛЕВЫХ ТРАНЗИСТОРОВ. Отчет по лабораторной работе №5 по дисциплине Электроника Цель работы Ознакомиться с конструкцией полевых транзисторов с управляющим pn переходом их принципом действия характеристиками и параметр...
16526. РАЗРАБОТКА И РЕАЛИЗАЦИЯ АЛГОРИТМА ЛЕКСИЧЕСКОГО АНАЛИЗАТОРА 61.5 KB
  Лабораторная работа № 3/4 РАЗРАБОТКА И РЕАЛИЗАЦИЯ АЛГОРИТМА ЛЕКСИЧЕСКОГО АНАЛИЗАТОРА 2.1. Введение Цель работы: Ознакомиться с теоретическими и практическими основами построения блока лексического анализа компилятора Глава 1. Общая характеристика процесса ко
16527. Информационная среда образовательного учреждения 17.04 KB
  Занятие №1 Тема: Информационная среда образовательного учреждения Цель: Формирование профессиональной компетентности будущего учителя истории в области использования современных информационных интегрированных продуктов на примере информационного интегр
16528. Организационная структура локальной сети ИСОУ и ее программное обеспечение 28 KB
  Лабораторная работа №2 Тема: Организационная структура локальной сети ИСОУ и ее программное обеспечение. Цель: Формирование профессиональной компетентности будущего историка в области использования современных информационных интегрированных. Вопрос...
16529. Программные средства учебного назначения 14.61 KB
  Занятие №3 Тема: Программные средства учебного назначения Цель: Формирование профессиональной компетентности будущего историка в области использования программных средств учебного назначения. Вопросы для обсуждения: Понятие программных средств уче
16530. Разработка и использование программных средств учебного назначения 13.45 KB
  Занятие №4 Тема: Разработка и использование программных средств учебного назначения Цель: Формирование профессиональной компетентности будущего историка в области использования программных средств учебного назначения. Вопросы для обсуждения: п...
16531. Цифровые образовательные ресурсы для исторического образования 15.37 KB
  Занятие №5 Тема: Цифровые образовательные ресурсы для исторического образования Цель: Формирование профессиональной компетентности будущего историка в области использования цифровых образовательных ресурсов. Вопросы для обсуждения: Понятие цифровые ...
16532. Использование материалов Единой коллекции ЦОР при изучении истории в школе 24 KB
  Занятие № 6 Тема: Использование материалов Единой коллекции ЦОР при изучении истории в школе. Цель: содействие становлению компетентности будущего учителя истории в области использования ЦОР при обучении школьников истории; развитие умений анализировать дидак
16533. Разработка и использование цифровых образовательных ресурсов при организации процесса обучения истории 16.85 KB
  Занятие № 7 Тема: Разработка и использование цифровых образовательных ресурсов при организации процесса обучения истории. Цель: Формирование базовых знаний о типологии и дидактических принципах использования современных ИКТ в процессе обучения школьнико