32746

Неинерциальные системы отсчёта. Силы инерции. Принцип эквивалентности. Уравнение движения в неинерциальных системах отсчёта

Доклад

Физика

Силы инерции. При рассмотрении уравнений движения тела в неинерциальной системе отсчета необходимо учитывать дополнительные силы инерции. Это уравнение может быть записано в привычной форме Второго закона Ньютона если ввести фиктивные силы инерции: переносная сила инерции сила Кориолиса Сила инерции фиктивная сила которую можно ввести в неинерциальной системе отсчёта так чтобы законы механики в ней совпадали с законами инерциальных систем. В математических вычислениях введения этой силы происходит путём преобразования уравнения...

Русский

2013-09-05

36 KB

108 чел.

21.Неинерциальные системы отсчёта. Силы инерции. Принцип эквивалентности. Уравнение движения в неинерциальных системах отсчёта.

Неинерциальная система отсчёта — произвольная система отсчёта, не являющаяся инерциальной. Примеры неинерциальных систем отсчета: система, движущаяся прямолинейно с постоянным ускорением, а также вращающаяся система.

При рассмотрении уравнений движения тела в неинерциальной системе отсчета необходимо учитывать дополнительные силы инерции. Законы Ньютона выполняются только в инерциальных системах отсчёта. Для того чтобы найти уравнение движения в неинерциальной системе отсчёта, нужно знать законы преобразования сил и ускорений при переходе от инерциальной системы к любой неинерциальной.

Классическая механика постулирует следующие два принципа:

время абсолютно, то есть промежутки времени между любыми двумя событиями одинаковы во всех произвольно движущихся системах отсчёта; 

пространство абсолютно, то есть расстояние между двумя любыми материальными точками одинаково во всех произвольно движущихся системах отсчёта. 

Эти два принципа позволяют записывать уравнение движения материальной точки относительно любой неинерциальной системы отсчёта, в которой не выполняется Первый закон Ньютона.

Основное уравнение динамики относительного движения материальной точки имеет вид:

,

где — масса тела, — ускорение тела относительно неинерциальной системы отсчёта, — сумма всех внешних сил, действующих на тело, — переносное ускорение тела, — Кориолисово ускорение тела.

Это уравнение может быть записано в привычной форме Второго закона Ньютона, если ввести фиктивные силы инерции:

— переносная сила инерции

— сила Кориолиса

Сила инерции — фиктивная сила, которую можно ввести в неинерциальной системе отсчёта так, чтобы законы механики в ней совпадали с законами инерциальных систем.

В математических вычислениях введения этой силы происходит путём преобразования уравнения

F1+F2+…Fn = ma к виду

F1+F2+…Fn–ma = 0 Где Fi — реально действующая сила, а –ma — «сила инерции».

Среди сил инерции выделяют следующие:

простую силу инерции;

центробежную силу, объясняющую стремление тел улететь от центра во вращающихся системах отсчёта;

силу Кориолиса, объясняющую стремление тел сойти с радиуса при радиальном движении во вращающихся системах отсчёта;

С точки зрения общей теории относительности, гравитационные силы в любой точке — это силы инерции в данной точке искривлённого пространства Эйнштейна

Центробежная сила — сила инерции, которую вводят во вращающейся (неинерциальной) системе отсчёта (чтобы применять законы Ньютона, рассчитанные только на инерциальные СО) и которая направлена от оси вращения (отсюда и название).

Принцип эквивалентности сил гравитации и инерции — эвристический принцип, использованный Альбертом Эйнштейном при выводе общей теории относительности. Один из вариантов его изложения: «Силы гравитационного взаимодействия пропорциональны гравитационной массе тела, силы инерции же пропорциональны инертной массе тела. Если инертная и гравитационная массы равны, то невозможно отличить, какая сила действует на данное тело — гравитационная или сила инерции.»

Формулировка Эйнштейна

Исторически, принцип относительности был сформулирован Эйнштейном так:

Все явления в гравитационном поле происходят точно так же как в соответствующем поле сил инерции, если совпадают напряжённости этих полей и одинаковы начальные условия для тел системы


 

А также другие работы, которые могут Вас заинтересовать

70699. Расчёт печатной платы 2.77 MB
  Основой многих импульсных источников питания служат однотактные обратноходовые преобразователи напряжения (ООП). ООП напряжения являются сейчас наиболее распространёнными. Это обусловлено тем, что в области малой...
70702. Технико-экономические показатели инвестиционного проекта 415.5 KB
  Объектом проектирования выбрана паровоздуходувная электростанция ПВЭС ОАО «ММК». ПВЭС находится в энергопроизводящей группе структуры энергетического хозяйства ОАО «ММК». Структура энергетического хозяйства включает в себя 3 группы...
70703. Изменение системы управления двухбалочного мостового крана 10т-25-22,5 1.1 MB
  Поверочный расчет электродвигателя. Расчет механических нагрузок приведенных к валу двигателя и моментов переключения. Проверка двигателя по нагреву. Характеристики электродвигателя после модернизации.
70704. Анализ и диагностика финансово-хозяйственной деятельности предприятия 1.17 MB
  Целью анализа является оценка стоимости и структуры имущества предприятия, источников его финансирования, динамики этих показателей. Анализ финансового состояния предприятия проводится на основе данных бухгалтерской отчетности, а именно форм №1 и №2.
70705. Моделирование объектов автоматизации 2.19 MB
  Невозможно представить себе современную науку без широкого применения математического моделирования. Сущность этой методологии состоит в замене исходного объекта (явления, процесса) его «образом» - математической моделью – и дальнейшем изучении модели с помощью реализуемых на компьютера...
70706. МОДЕЛИРОВАНИЕ ОБЪЕКТА АВТОМАТИЗАЦИИ 304 KB
  Курсовой проект состоит из текстовой и графической части. Текстовая часть включает следующие разделы: описание технологического процесса, выбор средств автоматизации, расчет ротаметра, расчет сопротивлений резисторов измерительной схемы автоматического потенциометра...
70707. Разработка дроссельного делителя потока для деления потока в соотношении 1:2 573.5 KB
  Схемы синхронизации гидродвигателей создаются на базе дроссельных делителей и сумматоров потоков. Используя дросселирование потока жидкости, проектируют автоматические регуляторы, поддерживающие равными расходы жидкости в параллельных потоках независимо от нагрузок.