32746

Неинерциальные системы отсчёта. Силы инерции. Принцип эквивалентности. Уравнение движения в неинерциальных системах отсчёта

Доклад

Физика

Силы инерции. При рассмотрении уравнений движения тела в неинерциальной системе отсчета необходимо учитывать дополнительные силы инерции. Это уравнение может быть записано в привычной форме Второго закона Ньютона если ввести фиктивные силы инерции: переносная сила инерции сила Кориолиса Сила инерции фиктивная сила которую можно ввести в неинерциальной системе отсчёта так чтобы законы механики в ней совпадали с законами инерциальных систем. В математических вычислениях введения этой силы происходит путём преобразования уравнения...

Русский

2013-09-05

36 KB

108 чел.

21.Неинерциальные системы отсчёта. Силы инерции. Принцип эквивалентности. Уравнение движения в неинерциальных системах отсчёта.

Неинерциальная система отсчёта — произвольная система отсчёта, не являющаяся инерциальной. Примеры неинерциальных систем отсчета: система, движущаяся прямолинейно с постоянным ускорением, а также вращающаяся система.

При рассмотрении уравнений движения тела в неинерциальной системе отсчета необходимо учитывать дополнительные силы инерции. Законы Ньютона выполняются только в инерциальных системах отсчёта. Для того чтобы найти уравнение движения в неинерциальной системе отсчёта, нужно знать законы преобразования сил и ускорений при переходе от инерциальной системы к любой неинерциальной.

Классическая механика постулирует следующие два принципа:

время абсолютно, то есть промежутки времени между любыми двумя событиями одинаковы во всех произвольно движущихся системах отсчёта; 

пространство абсолютно, то есть расстояние между двумя любыми материальными точками одинаково во всех произвольно движущихся системах отсчёта. 

Эти два принципа позволяют записывать уравнение движения материальной точки относительно любой неинерциальной системы отсчёта, в которой не выполняется Первый закон Ньютона.

Основное уравнение динамики относительного движения материальной точки имеет вид:

,

где — масса тела, — ускорение тела относительно неинерциальной системы отсчёта, — сумма всех внешних сил, действующих на тело, — переносное ускорение тела, — Кориолисово ускорение тела.

Это уравнение может быть записано в привычной форме Второго закона Ньютона, если ввести фиктивные силы инерции:

— переносная сила инерции

— сила Кориолиса

Сила инерции — фиктивная сила, которую можно ввести в неинерциальной системе отсчёта так, чтобы законы механики в ней совпадали с законами инерциальных систем.

В математических вычислениях введения этой силы происходит путём преобразования уравнения

F1+F2+…Fn = ma к виду

F1+F2+…Fn–ma = 0 Где Fi — реально действующая сила, а –ma — «сила инерции».

Среди сил инерции выделяют следующие:

простую силу инерции;

центробежную силу, объясняющую стремление тел улететь от центра во вращающихся системах отсчёта;

силу Кориолиса, объясняющую стремление тел сойти с радиуса при радиальном движении во вращающихся системах отсчёта;

С точки зрения общей теории относительности, гравитационные силы в любой точке — это силы инерции в данной точке искривлённого пространства Эйнштейна

Центробежная сила — сила инерции, которую вводят во вращающейся (неинерциальной) системе отсчёта (чтобы применять законы Ньютона, рассчитанные только на инерциальные СО) и которая направлена от оси вращения (отсюда и название).

Принцип эквивалентности сил гравитации и инерции — эвристический принцип, использованный Альбертом Эйнштейном при выводе общей теории относительности. Один из вариантов его изложения: «Силы гравитационного взаимодействия пропорциональны гравитационной массе тела, силы инерции же пропорциональны инертной массе тела. Если инертная и гравитационная массы равны, то невозможно отличить, какая сила действует на данное тело — гравитационная или сила инерции.»

Формулировка Эйнштейна

Исторически, принцип относительности был сформулирован Эйнштейном так:

Все явления в гравитационном поле происходят точно так же как в соответствующем поле сил инерции, если совпадают напряжённости этих полей и одинаковы начальные условия для тел системы


 

А также другие работы, которые могут Вас заинтересовать

4595. Модернизировать координатную ось динамической подвижной лазерной головки 6.26 MB
  Объектом разработки является модернизация координатной оси динамической подвижной оптической лазерной головки станка с ЧПУ, для расчёта оптимального способа обработки. Цель работы: Модернизировать координатную ось динамической подвижной лазерной гол...
4596. Организация пригородного движения на отделении дороги 2.62 MB
  Транспорт России – важная составная часть народного хозяйства. От его деятельности зависит развитие и функционирование предприятий, промышленности, сельского хозяйства, снабжения, торговли. Основная задача транспорта – полное и св...
4597. Принятие решений в условиях неопределенности. Игры с природой 129.5 KB
  Принятие решений в условиях неопределенности. Игры с природой Цель работы: освоить и закрепить практические навыки по принятию и обоснованию управленческих решений в условиях недостатка информации, когда один из игроков не имеет конкретной цели и сл...
4598. Основы программирования и алгоритмические языки. Конспект лекций 211.5 KB
  Лекция 1. Введение в язык java История возникновения языка Java Язык Java является одним из самых молодых языков программирования. Он моложе таких популярных языков, как Basic, Pascal, С и С++. Поскольку в момент создания Java язык С++ являлся...
4599. Основы объектно-ориентированного программирования. Конспект лекций 294.5 KB
  Основы объектно-ориентированного программирования Введение Язык С++ был создан как объектно-ориентированное продолжение одного из самых популярных в мире языков для разработки коммерческих программ. Язык С был разработан как нечто среднее между язык...
4600. Основные логические элементы. Основные приёмы работы в среде MatLab 84.5 KB
  Основные логические элементы Всё цифровое оборудование, от простого до сложного, сконструировано с использованием небольшого количества основных схем. Эти схемы, называемые логическими элементами, выполняют некоторые логические функции с двоичными д...
4601. Основы булевой алгебры. Построение комбинационных схем по структурной формуле на однотипных базовых элементах 163 KB
  Основы булевой алгебры Для описания работы схем вычислительной техники и автоматики используют булеву алгебру. Булевой функцией называют функцию f(x1, x2, х3,…, xn), аргументы которой x1, x1, x2, xn и сама функция принимают значение 0 или 1. Табл...
4602. Сумматор по модулю. Двоичный одноразрядный сумматор 67.5 KB
  Сумматор по модулю 2. Дискретные устройства, выполняющие операцию сложения над числами, представленными в двоичной системе счисления, называются двоичными сумматорами. Сумматор, который выполняет операцию сложения в одном разряде, называют одноразряд...
4603. Арифметические основы работы ЭВМ 70.5 KB
  Арифметические основы работы ЭВМ Правила выполнения арифметических действий над двоичными числами задаются таблицами сложения, вычитания и умножения. Таблица 1 Сложение Вычитание Умножение 0 + 0=0 0 – 0=0 0 x 0=0 0 + 1=1 1 – 0=1 0 x 1=0 1 ...