32750

Релятивистский закон преобразования скорости. Релятивистский импульс

Доклад

Физика

Релятивистский закон преобразования скорости. Пусть например в системе отсчета K вдоль оси x движется частица со скоростью Составляющие скорости частицы ux и uz равны нулю. Скорость этой частицы в системе K будет равна С помощью операции дифференцирования из формул преобразований Лоренца можно найти: Эти соотношения выражают релятивистский закон сложения скоростей для случая когда частица движется параллельно относительной скорости систем отсчета K и K'. Если в системе K' вдоль оси x' распространяется со скоростью u'x = c световой...

Русский

2013-09-05

34 KB

31 чел.

25.Релятивистский закон преобразования скорости. Релятивистский импульс.

Из преобразований Лоренца для координат и времени можно получить релятивистский закон сложения скоростей. Пусть, например, в системе отсчета K' вдоль оси x' движется частица со скоростью Составляющие скорости частицы u'x и u'z равны нулю. Скорость этой частицы в системе K будет равна

С помощью операции дифференцирования из формул преобразований Лоренца можно найти:

 

Эти соотношения выражают релятивистский закон сложения скоростей для случая, когда частица движется параллельно относительной скорости систем отсчета K и K'.

При υ << c релятивистские формулы переходят в формулы классической механики:

ux = u'x + υ,  uy = 0,  uz = 0.

 

Если в системе K' вдоль оси x' распространяется со скоростью u'x = c световой импульс, то для скорости ux импульса в системе K получим

 

Таким образом, в системе отсчета K световой импульс также распространяется вдоль оси x со скоростью c, что согласуется с постулатом об инвариантности скорости света.

Релятивистский импульс

В теории относительности импульс определяется по формуле

Величину

называют релятивистской массой, измеренной и ИСО, относительно которой движется тело со скоростью υ. 

Следовательно, .

При υ=c получим, что m0=m.0. Это уравнение имеет единственное решение: m0=0. Т.е. со скоростью, равной скорости света может двигаться только тело, имеющее массу покоя, равную нулю. Это говорит о предельном характере скорости света для материальных тел.


 

А также другие работы, которые могут Вас заинтересовать

40102. Математическая модель маятника на каретке 1.46 MB
  В качестве обобщенных координат для рассматриваемой системы с двумя степенями свободы выберем t угол отклонения маятника и xt положение каретки. Для записи уравнений динамики механической системы воспользуемся уравнениями Лагранжа второго рода 1.1 получим математическую модель рассматриваемого объекта в виде системы двух дифференциальных уравнений второго порядка 1. Дифференциальные уравнения в форме Коши Для записи системы дифференциальных уравнений в форме...
40103. СИНТЕЗ СИСТЕМ АВТОМАТИЧЕСКОЙ СТАБИЛИЗАЦИИ МЕХАНИЧЕСКОГО ОБЪЕКТА 13.61 MB
  Построение компьютерной модели с целью имитации движений, а также применение методов теории управления упрощается, если исходные уравнения привести к форме Коши. Для этого разрешим исходные уравнения относительно старших производных. Заметим, что старшие производные входят в уравнение линейно, что позволяет представить уравнения в матричной форме
40104. Синтез алгоритмов управления нестабильным объектом 449.5 KB
  Для достижения цели проекта необходимо решить следующие задачи: 1 – составить нелинейную математическую модель объекта и провести анализ методом компьютерного моделирования; 2 – провести анализ устойчивости управляемости и наблюдаемости объекта по линеаризованной модели; 3 – синтезировать регулятор состояния методом размещения собственных значений [2]; 4 – синтезировать наблюдатель состояний и динамический регулятор; 5 – оценить размеры области притяжения положения равновесия нелинейной системы с непрерывным регулятором; 6 – построить...
40105. Двойственный симплекс-метод, основные принципы, алгоритм. Случаи, когда удобно применять двойственный симплексный метод 178 KB
  ДСМ ДСМ как и СМ называется методом последовательного улучшения оценок и применяется для решения задачи: исходным пунктом этого метода является выбор такого базиса . Таким образом основные принципы ДСМ заключаются в том чтобы: каждый раз выполнялось 2 значения целевой функции убывало. Для этого воспользуемся 2м принципом ДСМ. Чтобы обеспечить это надо выбрать так что: 6 Алгоритм ДСМ формулируется так: Выбираем базис и строим I симплекстаблицу Если все то решение оптимально иначе переход к 3.
40106. Задача максимизации прибыли при заданных ценах на продукцию и ресурсы. Анализ оптимальных решений с помощью множителей Лагранжа 34.5 KB
  Требуется решить задачу максимизации прибыли при заданных P0 и p: mx P0fx – p x 1 x  0 2 Исследование задачи будем проводить с помощью функции Лагранжа: – балансовое соотношение В оптимальном плане x для любых используемых ресурсов отношение цены к предельной эффективности постоянно. Для этих же ресурсов показали что соотношение предельных эффективностей равно соотношению цен. Наибольшая отдача будет от тех ресурсов которые имеют самую большую предельную эффективность в текущей точке.
40107. Теорема о необходимых и достаточных условиях оптимальности смешанных стратегий 167.5 KB
  Пусть игра определена матрицей и ценой игры V. – оптимальная стратегия 1 игрока х является первой координатой некоторой седловой точки фции выигрыша Мх у. СЛЕДСТВИЕ: Если для смешанных стратегий и числа V одновременно выполняются 1 и 2 то будут оптимальными стратегиями игроков а V– цена игры. Докво: умножим 1 на y и просуммируем: умножим 2 на x и просуммируем: Получаем Тогда по следствию Т о седловой точке точка – седловая и –...
40108. Функция выигрыша в матричных играх без седловой точки. Смешанные и оптимальные смешанные стратегии. Метод сведения решения матричных игр к задаче линейного программирования 119.5 KB
  Функция выигрыша в матричных играх без седловой точки. Парная игра с нулевой суммой задается формально матрицей игры – матрицей А = {ij} элементы которой определяют выигрыш первого игрока и проигрыш второго если первый игрок выберет iю стратегию а второй jю стратегию. Пара i0j0 называется седловой точкой матрицы решением игры если выполняются условия: mx по столбцу I игрок min по строке II игрок Значение функции выигрыша в седловой точке называется ценой игры. Тогда выигрыш первого игрока при условии что он выбирает...
40109. Методы штрафных функций и методы центров в выпуклом программировании 90 KB
  Методы штрафных функций и методы центров в выпуклом программировании Метод штрафных функций Постановка задачи Даны непрерывно дифференцируемые целевая функция fx = fx1 xn и функции ограничений gjx = 0 j = 1 m; gjx 0 j = m1 p определяющие множество допустимых решений D. Требуется найти локальный минимум целевой функции на множестве D т. Стратегия поиска Идея метода заключается в сведении задачи на условный минимум к решению последовательности задач поиска безусловного минимума вспомогательной функции: Fx Ck =...
40110. Методы наискорейшего и координатного спуска для минимизации выпуклой функции без ограничений. Их алгоритмы и геометрическая интерпретация 94.5 KB
  Все методы спуска решения задачи безусловной минимизации различаются либо выбором направления спуска, либо способом движения вдоль направления спуска. Решается задача минимизации функции f(x) на всём пространстве Rn. Методы спуска состоят в следующей процедуре построения последовательност