32755

Уравнение затухающих колебаний и его решение. Коэффициент затухания. Логарифмический декремент затухания. Добротность

Доклад

Физика

Уравнение затухающих колебаний и его решение. Закон затухания колебаний определяется свойствами колебательных систем. Дифференциальное уравнение свободных затухающих колебаний линейной системы где s колеблющаяся величина описывающая тот или иной физический процесс δ = const коэффициент затухания ω0 циклическая частота свободных незатухающих колебаний той же колебательной системы т.1 в случае малых затуханий где Период затухающих колебаний с учетом формулы 7.

Русский

2013-09-05

92.5 KB

64 чел.

30.Уравнение затухающих колебаний и его решение. Коэффициент затухания. Логарифмический декремент затухания. Добротность.

Затухающие колебания — колебания, амплитуды которых из-за потерь энергии реальной колебательной системой с течением времени уменьшаются.

Закон затухания колебаний определяется свойствами колебательных систем. Обычно рассматривают линейные системы — идеализированные реальные системы, в которых параметры, определяющие физические свойства системы, в ходе процесса не изменяется. Различные по своей природе линейные системы описываются идентичными линейными дифференциальными уравнениями.

Дифференциальное уравнение свободных затухающих колебаний линейной системы

где s — колеблющаяся величина, описывающая тот или иной физический процесс, δ = const — коэффициент затухания, (ω0 — циклическая частота свободных незатухающих колебаний той же колебательной системы, т. е. при δ =0 (при отсутствии потерь энергии) называется собственной частотой колебательной системы. Решение уравнения рассмотрим в виде

(7.1) где u=u(t).

После нахождения первой и второй производных и их подстановки в (1) получим

Решение уравнения зависит от знака коэффициента перед искомой величиной. Пусть этот коэффициент положителен:

(7.2)

Тогда получим уравнение решением, которого является функция u=A0cos(ωt+φ). Значит, решение уравнения (7.1) в случае малых затуханий

где

Период затухающих колебаний с учетом формулы (7.2) равен

Если A(t) и A(t+Т) — амплитуды двух последовательных колебаний, соответствующих моментам времени, отличающимся на период, то отношение

называется декрементом затухания, а его логарифм

— логарифмическим декрементом затухания; Ne — число колебаний, совершаемых во время уменьшения амплитуды в е раз. Логарифмический декремент затухания — постоянная для данной колебательной системы величина.

Для характеристики колебательной системы пользуются понятием добротности, которая при малых значениях логарифмического декремента равна

Из формулы следует, что добротность пропорциональна числу колебаний Nе, совершаемых системой за время релаксации.

Для пружинного маятника массой m, совершающего малые колебания под действием упругой силы F=-kx, сила трения пропорциональна скорости, т. е.

где r — коэффициент сопротивления; знак минус указывает на противоположные направления силы трения и скорости.

При данных условиях закон движения маятника будет иметь вид

Используя формулу и принимая, что коэффициент затухания получим дифференциальное уравнение затухающих колебаний маятника:

Колебания маятника подчиняются закону

где частота 

Коэффициент затухания. Коэффициент d, определяющий быстроту изменения амплитуды, называется коэффициентом затухания. Если промежуток времени Dt = 1/d, то А0/А = е. Отсюда вытекает физический смысл коэффициента затухания: 

величина 1/d, равна промежутку времени, по истечении которого амплитуда колебаний уменьшается в е = 2.73 раз.

Добротность пружинного маятника

При увеличении коэффициента затухания δ период затухающих колебаний растет и при δ = ω0 обращается в бесконечность, т. е. движение перестает быть периодическим. В данном случае колеблющаяся величина асимптотически приближается к нулю, когда t→∞. Процесс не будет колебательным. Он называется апериодическим.

Логарифмический декремент затухания - безразмерная характеристика затухающих колебаний, измеряемая натуральным логарифмом отношения двух последовательных максимальных отклонений колеблющейся величины в одну и ту же сторону.

Добротность — характеристика колебательной системы, определяющая остроту резонанса и показывающая, во сколько раз запасы энергии в реактивных элементах контура больше, чем потери энергии на активных элементах за один период колебаний.

Добротность обратно пропорциональна скорости затухания собственных колебаний в системе. То есть, чем выше добротность колебательной системы, тем меньше потери энергии в течение каждого периода. Колебания в системе с высокой добротностью затухают медленно.

Общая формула для добротности любой колебательной системы:

,

где:

f — частота колебаний

W — энергия, запасённая в колебательной системе

Pd — рассеиваемая мощность.


 

А также другие работы, которые могут Вас заинтересовать

9003. Предмет, структура и функции философии, всеобщие свойства и связи 43.5 KB
  Предмет, структура и функции философии Предметом философии являются всеобщие свойства и связи (отношения) действительности - природы, общества, человека, отношения объективной действительности и субъективного мира, материального и идеального, б...
9004. Философия Древнего Востока. Проблема совершенного человека 38.5 KB
  Философия Древнего Востока. Проблема совершенного человека Буддизм - религиозно-философское учение, возникшее в древней Индии в VI – V вв. до н. э. и превратившееся в ходе его развития в одну из трех - наряду с христианством и исламом...
9005. Ранняя греческая философия. Древнегреческая философия 40.5 KB
  Ранняя греческая философия Древнегреческая философия представляет собой совокупность учений, развившихся с VI в. до н.э. по VI в. н.э. (от формирования архаических полисов на ионийском и италийском побережьях до расцвета демократических Афин и после...
9006. Философия Платона. Теория идей, познание, человек и государство у Платона 42.5 KB
  Философия Платона. Теория идей, познание, человек и государство у Платона После казни Сократа один из его лучших учеников Аристокл, получивший за свои широкие плечи прозвище Платон («широкоплечий»), надолго покинул Афины. Тяжело переживая смерть учи...
9007. Философия Аристотеля. Бытие, сущность, причинность, душа, материя и форма 44 KB
  Философия Аристотеля. Бытие, сущность, причинность, душа, материя и форма Аристотель (384 – 322 гг. до н. э.) - древнегреческий философ, энциклопедист, основоположник науки логики и ряда отраслей специального знания. Образование Аристотель...
9008. Античные школы стоиков, скептиков и эпикурейцев 28.5 KB
  Античные школы стоиков, скептиков и эпикурейцев Философия в период эллинизма частично изменила содержание и свои основные цели. Эти изменения были обусловлены социально-экономическими и политическими процессами в развивавшемся эллинистическом общест...
9009. Идеи рационализма в учениях Р. Декарта, Б. Спинозы и Г. В. Лейбница 50 KB
  Идеи рационализма в учениях Р. Декарта, Б. Спинозы и Г. В. Лейбница Идеи мыслителей эпохи Возрождения были развиты философией Нового времени. Прогресс опытного знания, науки требовал замены схоластического метода мышления новым методом познания, обр...
9010. Периоды, представители и проблемы философии Средневековья и Возрождения 44 KB
  Периоды, представители и проблемы философии Средневековья и Возрождения Средневековая европейская философия - важный этап в истории философии, связанный прежде всего с христианством. Хронологически этот период охватывает V –XV вв. Специфик...
9011. Британская философия XVII – XVIII вв. (Ф. Бэкон, Т. Гоббс, Дж. Локк, Дж. Беркли, Д. Юм) 53 KB
  Британская философия XVII – XVIII вв. (Ф. Бэкон, Т. Гоббс, Дж. Локк, Дж. Беркли, Д. Юм) Эмпиризм - учение в теории познания, считающее чувственный опыт единственным источником знаний, утверждающее, будто все знание обосновывается в опыте и...