32755

Уравнение затухающих колебаний и его решение. Коэффициент затухания. Логарифмический декремент затухания. Добротность

Доклад

Физика

Уравнение затухающих колебаний и его решение. Закон затухания колебаний определяется свойствами колебательных систем. Дифференциальное уравнение свободных затухающих колебаний линейной системы где s колеблющаяся величина описывающая тот или иной физический процесс δ = const коэффициент затухания ω0 циклическая частота свободных незатухающих колебаний той же колебательной системы т.1 в случае малых затуханий где Период затухающих колебаний с учетом формулы 7.

Русский

2013-09-05

92.5 KB

69 чел.

30.Уравнение затухающих колебаний и его решение. Коэффициент затухания. Логарифмический декремент затухания. Добротность.

Затухающие колебания — колебания, амплитуды которых из-за потерь энергии реальной колебательной системой с течением времени уменьшаются.

Закон затухания колебаний определяется свойствами колебательных систем. Обычно рассматривают линейные системы — идеализированные реальные системы, в которых параметры, определяющие физические свойства системы, в ходе процесса не изменяется. Различные по своей природе линейные системы описываются идентичными линейными дифференциальными уравнениями.

Дифференциальное уравнение свободных затухающих колебаний линейной системы

где s — колеблющаяся величина, описывающая тот или иной физический процесс, δ = const — коэффициент затухания, (ω0 — циклическая частота свободных незатухающих колебаний той же колебательной системы, т. е. при δ =0 (при отсутствии потерь энергии) называется собственной частотой колебательной системы. Решение уравнения рассмотрим в виде

(7.1) где u=u(t).

После нахождения первой и второй производных и их подстановки в (1) получим

Решение уравнения зависит от знака коэффициента перед искомой величиной. Пусть этот коэффициент положителен:

(7.2)

Тогда получим уравнение решением, которого является функция u=A0cos(ωt+φ). Значит, решение уравнения (7.1) в случае малых затуханий

где

Период затухающих колебаний с учетом формулы (7.2) равен

Если A(t) и A(t+Т) — амплитуды двух последовательных колебаний, соответствующих моментам времени, отличающимся на период, то отношение

называется декрементом затухания, а его логарифм

— логарифмическим декрементом затухания; Ne — число колебаний, совершаемых во время уменьшения амплитуды в е раз. Логарифмический декремент затухания — постоянная для данной колебательной системы величина.

Для характеристики колебательной системы пользуются понятием добротности, которая при малых значениях логарифмического декремента равна

Из формулы следует, что добротность пропорциональна числу колебаний Nе, совершаемых системой за время релаксации.

Для пружинного маятника массой m, совершающего малые колебания под действием упругой силы F=-kx, сила трения пропорциональна скорости, т. е.

где r — коэффициент сопротивления; знак минус указывает на противоположные направления силы трения и скорости.

При данных условиях закон движения маятника будет иметь вид

Используя формулу и принимая, что коэффициент затухания получим дифференциальное уравнение затухающих колебаний маятника:

Колебания маятника подчиняются закону

где частота 

Коэффициент затухания. Коэффициент d, определяющий быстроту изменения амплитуды, называется коэффициентом затухания. Если промежуток времени Dt = 1/d, то А0/А = е. Отсюда вытекает физический смысл коэффициента затухания: 

величина 1/d, равна промежутку времени, по истечении которого амплитуда колебаний уменьшается в е = 2.73 раз.

Добротность пружинного маятника

При увеличении коэффициента затухания δ период затухающих колебаний растет и при δ = ω0 обращается в бесконечность, т. е. движение перестает быть периодическим. В данном случае колеблющаяся величина асимптотически приближается к нулю, когда t→∞. Процесс не будет колебательным. Он называется апериодическим.

Логарифмический декремент затухания - безразмерная характеристика затухающих колебаний, измеряемая натуральным логарифмом отношения двух последовательных максимальных отклонений колеблющейся величины в одну и ту же сторону.

Добротность — характеристика колебательной системы, определяющая остроту резонанса и показывающая, во сколько раз запасы энергии в реактивных элементах контура больше, чем потери энергии на активных элементах за один период колебаний.

Добротность обратно пропорциональна скорости затухания собственных колебаний в системе. То есть, чем выше добротность колебательной системы, тем меньше потери энергии в течение каждого периода. Колебания в системе с высокой добротностью затухают медленно.

Общая формула для добротности любой колебательной системы:

,

где:

f — частота колебаний

W — энергия, запасённая в колебательной системе

Pd — рассеиваемая мощность.


 

А также другие работы, которые могут Вас заинтересовать

32270. Строительство одноэтажных промышленных зданий 57 KB
  Так при монтаже одноэтажного здания раздельным методом за первую проходку крана устанавливают все колонны; за вторую проходку подкрановые балки и подстропильные фермы с продольными связями а затем фермы и плиты покрытия; комплексный совмещенный метод. В этом случае кран двигаясь вдоль пролета монтирует все колонны а затем перемещаясь поперек пролета ведет секционный монтаж. Железобетонные колонны как правило монтируют непосредственно с транспортных средств. Предварительно доставленные на строительную площадку легкие колонны...
32271. Монтажные потоки, схемы монтажа и порядок складирования конструкций одноэтажных промышленных зданий легкого типа 104.5 KB
  Монтажные потоки схемы монтажа и порядок складированияконструкций одноэтажных промышленных зданий легкого типа Практикой выработан ряд методов монтажа строительных конструкций промышленных зданий применяемых в зависимости от требуемой последовательности производства работ конструктивной схемы возводимого здания вида монтажного и технологического оборудования сроков и порядка ввода зданий в эксплуатацию очередности поставки сборных конструкций и деталей. Одноэтажные промышленные здания легкого типа монтируют преимущественно ...
32272. Монтажные потоки, схемы монтажа и порядок складирования конструкций одноэтажных промышленных зданий среднего и тяжелого типов 263 KB
  Различают следующие методы монтажа элементов каркаса зданий: раздельный дифференцированный при котором за первую проходку крана устанавливают все колонны; за вторую подкрановые балки и подстропильные фермы с продольными связями а затем фермы и плиты покрытия рис. В последнем случае кран движется вдоль пролета монтируются все колонны а затем перемещается поперек пролета ведется секционный монтаж. Так например при пролете 12 и шаге колонн 6 м движении крана по середине пролета можно с одной стоянки монтировать до 6 колонн или...
32273. Порядок и методы монтажа многоэтажных промышленных зданий. Схемы размещения монтажных кранов, применяемая оснастка 31 KB
  Наиболее распространенными типами промышленных многоэтажных зданий являются типовые двухсекционные четырехэтажные и трехсекционные пятиэтажные здания с полным железобетонным каркасом монтируемые из унифицированных сборных железобетонных элементов: колонн высотой в один этаж ригелей и плит междуэтажных и чердачных перекрытий. Захватными приспособлениями служат: для колонн траверсы и стропы а для балок ригелей и плит перекрытия траверсы с полуавтоматическими стропами. Выверку правильности расположения колонн и фиксацию расстояний между...
32274. Монтаж конструкций многоэтажных зданий с использованием групповых кондукторов и РШИ 93 KB
  Монтаж конструкций многоэтажных зданий с использованиемгрупповых кондукторов и РШИ Монтаж конструкций при использовании групповых кондукторов При наличии групповых кондукторов рис. В каждой ячейке последовательно устанавливают выверяют и закрепляют все элементы каркаса и после этого перемещают кондуктор на следующую стоянку. После установки колонн их раскрепляют хомутами кондуктора осуществляют предварительную точечную сварку укладывают ригели и сваривают их стыки с колоннами укладывают и сваривают распорные плиты с закладными деталями...
32275. Особенности возведения кирпичных зданий - совмещение каменной кладки с работами по монтажу конструкций и устройству монолитных участков. 24 KB
  При замерзании свежей кладки рр в швах быстро теряет свои свва свободн вода превращся в лед увеличиваясь в объеме что влечет дефекты трещины и разрушение шва недостаточн уплотненность. В проц оттаивания швы обжимаются весом вышележащ кладки что вызыв неравномерн осадку здя = трещ дефции. Спбы выполнения кам кладки в зимн услх: 1.
32276. Организация рабочего места каменщиков 405.5 KB
  Рабочее место каменщика при кладке стен включает участок возводимой стены и часть примыкающей к ней площади, в пределах которой размещают материалы, приспособления, инструмент и передвигается сам каменщик. Рабочее место каменщика состоит из трех зон (рис. 1, а, б) : рабочей 1 - свободной полосы вдоль кладки, на которой работают каменщики; зоны материалов
32277. Возведение кирпичных зданий следует осуществлять только поточным методом, предусматривающим деление здания на несколько одинаковых по трудоемкости захваток: по одно-, двух- и трехзахватной системам 67 KB
  Билет 7 Однозахватная система организации работ применяется преимущественно при строительстве небольших в плане односекционных домов при одноэтажном строительстве когда кладку ведут на всю высоту этажа при трехъярусном членении. В этот же день во вторую смену выполняют вспомогательные работы: установку подмостей доставку кирпича на подмости и т. На захватке рабочем участке где выполняют монтажные работы по условиям техники безопасности не могут одновременно работать каменщики и наоборот. В сельскохозяйственном строительстве при...
32278. Организация возведения кирпичных стен 26 KB
  Численность комплексной бригады может изменяться от 20 до 40 человек в зависимости от конструктивных особенностей здания и особенно кладки. При поточном выполнении каменной кладки основные понятия технологии работ имеют свое специфическое определение. Захватка типовая повторяющаяся в плане часть здания с приблизительно равными на данном и последующих за ним участках полсекции секция две секции объемами кладки предоставленная бригаде каменщиков для поточного выполнения работы на целое число смен.