32761

Вывод уравнения молекулярно-кинетической теории идеальных газов для давления и его сравнения с уравнением Клайперона-Менделеева

Доклад

Физика

Основное уравнение молекулярнокинетической теории идеального газа Это уравнение связывает макропараметры системы давление p и концентрацию молекулс ее микропараметрами массой молекул их средним квадратом скорости или средней кинетической энергией: Вывод этого уравнения основан на представлениях о том что молекулы идеального газа подчиняются законам классической механики а давление это отношение усредненной по времени силы с которой молекулы бьют по стенке к площади стенки. Учитывая связь между концентрацией молекул в газе и его...

Русский

2013-09-05

59.5 KB

146 чел.

36.Вывод уравнения молекулярно-кинетической теории идеальных газов для давления и его сравнения с уравнением Клайперона-Менделеева.

Основное уравнение молекулярно-кинетической теории идеального газа

Это уравнение связывает макропараметры системы – давление p и концентрацию молекулс ее микропараметрами – массой молекул, их средним квадратом скорости или средней кинетической энергией:

Вывод этого уравнения основан на представлениях о том, что молекулы идеального газа подчиняются законам классической механики, а давление – это отношение усредненной по времени силы, с которой молекулы бьют по стенке, к площади стенки.

Пропорциональность силы, с которой молекулы воздействуют на стенку, их концентрации, массе и скорости каждой молекулы качественно понятны. Квадратичный рост давления со скоростью связан с тем, что от скорости зависит не только сила отдельного удара, но и частота соударений молекул со стенкой.

Учитывая связь между концентрацией молекул в газе и его плотностью ( = nm0), можно получить еще одну форму основного уравнения МКТ идеального газа:

Уравнение Менделеева – Клапейрона (уравнение состояния идеального газа)

В результате экспериментальных исследований многих ученых было установлено, что макропараметры реальных газов не могут изменяться независимо. Они связаны уравнением состояния:

pV = vRT

где R = 8,31 Дж/(K·моль) – универсальная газовая постоянная, , где m – масса газа и M – молярная масса газа. Уравнение Менделеева – Клапейрона называют уравнением состояния, поскольку оно связывает функциональной зависимостью параметры состояния. Его записывают и в других видах:


Пользуясь уравнением состояния, можно выразить один параметр через другой и построить график первого из них, как функции второго.

Графики зависимости одного параметра от другого, построенные при фиксированных температуре, объеме и давлении, называют соответственно изотермой, изохорой и изобарой.

 

 

Например, зависимость давления p от температуры T при постоянном объеме V и постоянной массе m газа – это функция , где k – постоянный числовой множитель. Графиком такой функции в координатах p,Т будет прямая, идущая от начала координат, как и графиком функции y(x)=kx в координатах y,x (рис. 3).

Зависимость давления p от объема V при постоянной массе m газа и температуре T выражается так:

,

где k1 – постоянный числовой множитель. График функции в координатах y,x представляет собой гиперболу, так же как и график функции в координатах p,V.

Рис. 3


 

А также другие работы, которые могут Вас заинтересовать

1085. Расчет турбинных ступеней. Методика расчета турбинной ступени 426.5 KB
  Выбор исходных данных и параметров при расчете турбинной ступени. Методика расчета турбинной ступени. Процесс расширения водяного пара в турбинной ступени. Схема отклонения потока в косом срезе сопловой решетки. Особенности расчета турбинных ступеней.
1086. Особенности расчета и проектирования ступеней с длинными лопатками 499 KB
  Уравнения радиального равновесия. Законы профилирования турбинных лопаток. Закон постоянного профиля сопловых и рабочих лопаток по высоте ступени. Примеры исполнения лопаток паровых турбин.
1087. Основы проектирования паровых турбин 613 KB
  Основные показатели паровых турбин и их компоновки. Схема компоновки паровой турбины К-800-23,5 ЛМЗ. Предельная мощность однопоточной конденсационной турбины. Компоновочные решения для паровых турбин ТЭС. Упрощенная тепловая схема конденсационной ПТУ. Способы повышения мощности паровых турбин.
1088. Основные расчеты при проектировании паровой турбины 328 KB
  Построение процесса расширения водяного пара в проточной части турбины и оценки его расхода. Расчет числа ступеней и распределение теплоперепадов по ступеням турбины. Выбор частоты вращения валопровода турбоагрегата и числа его ЦНД.
1089. Обеспечение надежности основных элементов паровых турбин. Выбор конструкции роторов 915 KB
  Конструкции уплотнений паровых турбин. Расчет осевых усилий и способы их компенсации. Пример конструкции паровой турбины. Схема разгрузки осевого подшипника. Статическая прочность рабочих лопаток турбинных ступеней. Конструкции роторов паровых турбин.
1090. Особенности переменных режимов работы паровой турбины 792 KB
  Общая характеристика переменных режимов. Переменный режим работы турбинных решеток. Изменение степени реактивности от расчетного значения. Треугольники скоростей для последней ступени при изменении давления. Распределение давлений и теплоперепадов по ступеням турбины при переменном режиме ее эксплуатации.
1091. Влияние начальных и конечных параметров водяного пара на мощность паровых турбин 228 KB
  Влияние начального давления на мощность турбин. Относительное изменение внутренней мощности паровой турбины. Влияние начальной температуры пара и его температуры после промежуточного перегрева на мощность турбины. Влияние конечного давления пара на мощность турбины. Универсальная кривая приращения мощности от давления в конденсаторе вида.
1092. Переменные режимы эксплуатации паровых турбин энергоблоков ТЭС 1.56 MB
  Характеристика переменных режимов ТЭС. Пример графика электрической нагрузки энергосистемы. Маневренность турбоагрегатов и программы регулирования энергоблоков ТЭС. Холостой ход турбоагрегата. Моторный режим. Режим горячего вращающегося резерва. Реализация перегрузочных режимов в турбоустановках.
1093. Системы парораспределения паровых турбин. Сопловое и дроссельное парораспределение 651 KB
  Общая характеристика систем парораспределения. Общий характер суточного графика нагрузок энергосистемы. Схема основных паропроводов турбоустановки К-210-12,8 ЛМЗ. Дроссельное парораспределение