32772

Обратимые и необратимые процессы. Круговой процесс (цикл). Тепловые двигатели и холодильные машины. Термический КПД

Доклад

Физика

производит положительную работу за счёт своей внутренней энергии и количеств теплоты Qn полученных от внешних источников а на др. системой или над системой работа А равна алгебраической сумме количеств теплоты Q полученных или отданных на каждом участке К. Отношение А Qn совершённой системой работы к количеству полученной ею теплоты называется коэффициентом полезного действия кпд К. называется прямым если его результатом является совершение работы над внешними телами и переход определённого количества теплоты от более нагретого...

Русский

2013-09-05

52.5 KB

31 чел.

48.Обратимые и необратимые процессы. Круговой процесс (цикл). Тепловые двигатели и холодильные машины. Термический КПД.

ОБРАТИМЫЕ И НЕОБРАТИМЫЕ ПРОЦЕССЫ, пути изменения состояния термодинамич. системы. Процесс наз. обратимым, если он допускает возвращение рассматриваемой системы из конечного состояния в исходное через ту же последовательность промежут. состояний, что и в прямом процессе, но проходимую в обратном порядке. При этом в исходное состояние возвращается не только система, но и среда. Обратимый процесс возможен, если и в системе, и в окружающей среде он протекает равновесно. При этом предполагается, что равновесие существует между отдельными частями рассматриваемой системы и на границе с окружающей средой. Обратимый процесс - идеализир. случай, достижимый лишь при бесконечно медленном изменении термодинамич. параметров. Скорость установления равновесия должна быть больше, чем скорость рассматриваемого процесса. Если невозможно найти способ вернуть и систему, и тела в окружающей среде в исходное состояние, процесс изменения состояния системы наз. необратимым.

Необратимые процессы могут протекать самопроизвольно только в одном направлении; таковы диффузия, теплопроводность, вязкое течение и др. Для хим. р-ции применяют понятия термодинамич. и кинетич. обратимости, к-рые совпадают только в непосредств. близости к состоянию равновесия. Р-ция А + ВС + D наз. кинетически обратимой или двусторонней, если в данных условиях продукты С и D могут реагировать друг с другом с образованием исходных в-в А и В. При этом скорости прямой и обратной р-ций, соотв. , гдеи-константы скорости, [А], [В], [С], [D]- текущие концентрации (активности), с течением времени становятся равными и наступает химическое равновесие, в к-ром -константа равновесия., зависящая от т-ры. Кинетически необратимыми (односторонними) являются обычно такие р-ции, в ходе к-рых хотя бы один из продуктов удаляется из зоны р-ции (выпадает в осадок, улетучивается или выделяется в виде малодиссоциированного соед.), а также р-ции, сопровождающиеся выделением большого кол-ва тепла.

На практике нередко встречаются системы, находящиеся в частичном равновесии, т.е. в равновесии по отношению к определенного рода процессам, тогда как в целом система неравновесна. Напр., образец закаленной стали обладает пространств. неоднородностью и является системой, неравновесной по отношению к диффузионным процессам, однако в этом образце могут происходить равновесные циклы мех. деформации, поскольку времена релаксации диффузии и деформации в твердых телах отличаются на десятки порядков. Следовательно, процессы с относительно большим временем релаксации являются кинетически заторможенными и могут не приниматься во внимание при термодинамич. анализе более быстрых процессов.

Необратимые процессы сопровождаются диссипативными эффектами, сущностью к-рых является производство (генерирование) энтропии в системе в результате протекания рассматриваемого процесса. Простейшее выражение закона диссипации имеет вид:

гдесредняя т-ра, diS-производство энтропии, - т. наз. нескомпенсированная теплота Клаузиуса (теплота диссипации).

Обратимые процессы, будучи идеализированными, не сопровождаются диссипативными эффектами. Микроско-пич. теория обратимых и необратимых процессов развивается в статистической термодинамике. Системы, в к-рых протекают необратимые процессы, изучает термодинамика необратимых процессов.

Круговой процесс (цикл) в термодинамике, процесс, при котором физическая система (например, пар), претерпев ряд изменений, возвращается в исходное состояние. Термодинамические параметры и характеристические функции состояния системы (температура Т, давление р, объём V, внутренняя энергия U, энтропия S и др.) в конце К. п. вновь принимают первоначальное значение и, следовательно, их изменения при К. п. равны нулю (U = 0 и т. д.). Все изменения, возникающие в результате К. п., происходят только в среде, окружающей систему. Система (рабочее тело) на одних участках К. п. производит положительную работу за счёт своей внутренней энергии и количеств теплоты Qn, полученных от внешних источников, а на др. участках К. п. работу над системой совершают внешние силы (часть её идёт на восстановление внутренней энергии системы). Согласно первому началу термодинамики (закону сохранения энергии), произведённая в К. п. системой или над системой работа (А) равна алгебраической сумме количеств теплоты (Q), полученных или отданных на каждом участке К. п. (U = QА = 0,А = Q). Отношение А/Qn (совершённой системой работы к количеству полученной ею теплоты) называется коэффициентом полезного действия (кпд) К. п.

  Различают равновесные (точнее, квазиравновесные) К. п., в которых последовательно проходимые системой состояния близки к равновесным, и неравновесные К. п., у которых хотя бы один из участков является неравновесным процессом. У равновесных К. п. кпд максимален. На рисунке дано графическое изображение равновесного (обратимого) Карно цикла, имеющего максимальное кпд.

  К. п. называется прямым, если его результатом является совершение работы над внешними телами и переход определённого количества теплоты от более нагретого тела (нагревателя) к менее нагретому (холодильнику). К. п., результатом которого является перевод определённого количества теплоты от холодильника к нагревателю за счёт работы внешних сил, называется обратным К. п. или холодильным циклом.

Тепловой двигатель — тепловая машина, превращающая тепло в механическую энергию. Использует зависимость теплового расширения вещества от температуры. Действие теплового двигателя подчиняется законам термодинамики. Для работы необходимо создать разность давлений по обе стороны поршня двигателя или лопастей турбины. Для работы двигателя обязательно наличие топлива. Это возможно при нагревании рабочего тела (газа), который совершает работу за счёт изменения своей внутренней энергии. Повышение и понижение температуры осуществляется, соответственно, нагревателем и холодильником. Был предложен вариант вечного двигателя, нарушающего 2 закон термодинамики. Если не использовать холодильник и нагреватель, а просто встроить в поршень демона Максвелла, который будет пропускать в одну сторону горячие молекулы, а в другую холодные, то поршень придёт в движение. Если дать команду демону пропускать молекулы в другом направлении, поршень спустя какое-то время двинется в обратном направлении.

Работа, совершаемая двигателем, равна:

,где:

QH — количество теплоты, полученное от нагревателя,

QX — количество теплоты, отданное охладителю.

Коэффициент полезного действия (КПД) теплового двигателя рассчитывается как отношение работы, совершаемой двигателем, к количеству теплоты, полученному от нагревателя:


Часть теплоты при передаче неизбежно теряется, поэтому КПД двигателя менее 1. Максимально возможным КПД обладает двигатель Карно. КПД двигателя Карно зависит только от абсолютных температур нагревателя(
TH) и холодильника(TX):


 

А также другие работы, которые могут Вас заинтересовать

35543. Привод ленточного транспортера с асинхронным двигателем трехфазного тока 1.55 MB
  Частота вращения тихоходного вала: где скорость движения ленты . Определение вращающих моментов на валах привода.4 Частота вращения тихоходного вала об мин 30.0 Частота вращения Быстроходного вала об мин.
35544. Рассмотрение особенностей перевода на английский язык местных реалий белорусских рекламных проспектов 255 KB
  Реклама - это явление, существующее само по себе как способ общения или сообщения, направленного на привлечение внимания, ещё с древних времен. Ее история тесно связана с развитием производства, обмена товарами, всего общества в целом. В современном мире реклама прочно заняла ведущие
35545. Рихтер – личность, мыслитель, музыкант (на материале: «Монсенжон Б. Рихтер. Диалоги. Дневники») 2.35 MB
  Целью данной работы является выявление масштаба личности Святослава Рихтера, многогранности его таланта, осмысление различных граней творческой деятельности великого музыканта, обусловленной его незаурядными личностными качествами.
35546. Исследование свойств графов. Построение основных матриц. Решение системы линейных алгебраических уравнений методом графов 306 KB
  Исключив общее ребро е из двух несовпадающих циклов, мы превратим эти циклы в две несовпадающие простые цепи, объединение которых, в силу свойств цепей, будет содержать простой цикл (естественно, без ребра е).
35547. ПРОЕКТИРОВАНИЕ ФАСОННОГО ДИСКОВОГО РЕЗЦА С ПРИМЕНЕНИЕМ ЭВМ 835.5 KB
  Приведены методика проектирования дискового фасонного резца на базе системы автоматизированного проектирования металла режущего инструмента САПР РИ и характеристики фасонных резцов их конструктивные особенности технические условия на проектирование резцов программа коррекционного расчета профиля дискового фасонного резца на ЭВМ СМ4. По конструктивной форме фасонные резцы подразделяются на стержневые призматические и дисковые Наибольшее распространение получили дисковые резцы так как они более технологичны в изготовлении и...
35548. Проектирование фасонных резцов 111 KB
  Целью работы является ознакомление с различными формами и видами фасонных резцов, правилами установки, правилами назначения передних и задних углов, алгоритмом проектирования профиля фасонного резца
35549. Двухступенчатый цилиндрический редуктор 553.5 KB
  Определение силовых и кинематических параметров редуктора. Конструирование зубчатого редуктора. Конструирование и расчет элементов корпуса редуктора. Редуктор двухступенчатый несоосный Кинематическая схема редуктора: вращающий момент на тихоходном валу редуктора; угловая скорость выходного вала редуктора; ч.
35550. Редуктор двухступенчатый соосный двухпоточный с внутренним зацеплением тихоходной ступени 1.7 MB
  Кинематический расчет и выбор электродвигателя Исходные данные: потребный момент на валу исполнительного механизма ИМ Тим=30Нм; угловая скорость вала ИМ ωим=58с1; Определяем мощность на валу ИМ Nим= Тимх ωим=30х58=174Вт. Определяем общий КПД привода по схеме привода ηобщ=ηкп ηшп ηм ηп1. =097209820994=0868 Определяем потребную мощность электродвигателя [1 с. Определяем номинальную частоту вращения электродвигателя по формуле 5 [1c.
35551. Кибернетика. Курс лекций 887.5 KB
  Уже давно ученые обнаружили сходство некоторых процессов управления в системах различной материальной природы и попытались использовать эти аналоги в исследованиях и практических приложениях. Она показала плодотворность использования аналогии процессов управления для их познания и совершенствования. Именно на этой почве формируются конкретные приложения кибернетики в экономике предметом изучения которой являются процессы управления и связанные с ними процессы передачи и обработки информации в экономических системах. Это обуславливается...