32772

Обратимые и необратимые процессы. Круговой процесс (цикл). Тепловые двигатели и холодильные машины. Термический КПД

Доклад

Физика

производит положительную работу за счёт своей внутренней энергии и количеств теплоты Qn полученных от внешних источников а на др. системой или над системой работа А равна алгебраической сумме количеств теплоты Q полученных или отданных на каждом участке К. Отношение А Qn совершённой системой работы к количеству полученной ею теплоты называется коэффициентом полезного действия кпд К. называется прямым если его результатом является совершение работы над внешними телами и переход определённого количества теплоты от более нагретого...

Русский

2013-09-05

52.5 KB

31 чел.

48.Обратимые и необратимые процессы. Круговой процесс (цикл). Тепловые двигатели и холодильные машины. Термический КПД.

ОБРАТИМЫЕ И НЕОБРАТИМЫЕ ПРОЦЕССЫ, пути изменения состояния термодинамич. системы. Процесс наз. обратимым, если он допускает возвращение рассматриваемой системы из конечного состояния в исходное через ту же последовательность промежут. состояний, что и в прямом процессе, но проходимую в обратном порядке. При этом в исходное состояние возвращается не только система, но и среда. Обратимый процесс возможен, если и в системе, и в окружающей среде он протекает равновесно. При этом предполагается, что равновесие существует между отдельными частями рассматриваемой системы и на границе с окружающей средой. Обратимый процесс - идеализир. случай, достижимый лишь при бесконечно медленном изменении термодинамич. параметров. Скорость установления равновесия должна быть больше, чем скорость рассматриваемого процесса. Если невозможно найти способ вернуть и систему, и тела в окружающей среде в исходное состояние, процесс изменения состояния системы наз. необратимым.

Необратимые процессы могут протекать самопроизвольно только в одном направлении; таковы диффузия, теплопроводность, вязкое течение и др. Для хим. р-ции применяют понятия термодинамич. и кинетич. обратимости, к-рые совпадают только в непосредств. близости к состоянию равновесия. Р-ция А + ВС + D наз. кинетически обратимой или двусторонней, если в данных условиях продукты С и D могут реагировать друг с другом с образованием исходных в-в А и В. При этом скорости прямой и обратной р-ций, соотв. , гдеи-константы скорости, [А], [В], [С], [D]- текущие концентрации (активности), с течением времени становятся равными и наступает химическое равновесие, в к-ром -константа равновесия., зависящая от т-ры. Кинетически необратимыми (односторонними) являются обычно такие р-ции, в ходе к-рых хотя бы один из продуктов удаляется из зоны р-ции (выпадает в осадок, улетучивается или выделяется в виде малодиссоциированного соед.), а также р-ции, сопровождающиеся выделением большого кол-ва тепла.

На практике нередко встречаются системы, находящиеся в частичном равновесии, т.е. в равновесии по отношению к определенного рода процессам, тогда как в целом система неравновесна. Напр., образец закаленной стали обладает пространств. неоднородностью и является системой, неравновесной по отношению к диффузионным процессам, однако в этом образце могут происходить равновесные циклы мех. деформации, поскольку времена релаксации диффузии и деформации в твердых телах отличаются на десятки порядков. Следовательно, процессы с относительно большим временем релаксации являются кинетически заторможенными и могут не приниматься во внимание при термодинамич. анализе более быстрых процессов.

Необратимые процессы сопровождаются диссипативными эффектами, сущностью к-рых является производство (генерирование) энтропии в системе в результате протекания рассматриваемого процесса. Простейшее выражение закона диссипации имеет вид:

гдесредняя т-ра, diS-производство энтропии, - т. наз. нескомпенсированная теплота Клаузиуса (теплота диссипации).

Обратимые процессы, будучи идеализированными, не сопровождаются диссипативными эффектами. Микроско-пич. теория обратимых и необратимых процессов развивается в статистической термодинамике. Системы, в к-рых протекают необратимые процессы, изучает термодинамика необратимых процессов.

Круговой процесс (цикл) в термодинамике, процесс, при котором физическая система (например, пар), претерпев ряд изменений, возвращается в исходное состояние. Термодинамические параметры и характеристические функции состояния системы (температура Т, давление р, объём V, внутренняя энергия U, энтропия S и др.) в конце К. п. вновь принимают первоначальное значение и, следовательно, их изменения при К. п. равны нулю (U = 0 и т. д.). Все изменения, возникающие в результате К. п., происходят только в среде, окружающей систему. Система (рабочее тело) на одних участках К. п. производит положительную работу за счёт своей внутренней энергии и количеств теплоты Qn, полученных от внешних источников, а на др. участках К. п. работу над системой совершают внешние силы (часть её идёт на восстановление внутренней энергии системы). Согласно первому началу термодинамики (закону сохранения энергии), произведённая в К. п. системой или над системой работа (А) равна алгебраической сумме количеств теплоты (Q), полученных или отданных на каждом участке К. п. (U = QА = 0,А = Q). Отношение А/Qn (совершённой системой работы к количеству полученной ею теплоты) называется коэффициентом полезного действия (кпд) К. п.

  Различают равновесные (точнее, квазиравновесные) К. п., в которых последовательно проходимые системой состояния близки к равновесным, и неравновесные К. п., у которых хотя бы один из участков является неравновесным процессом. У равновесных К. п. кпд максимален. На рисунке дано графическое изображение равновесного (обратимого) Карно цикла, имеющего максимальное кпд.

  К. п. называется прямым, если его результатом является совершение работы над внешними телами и переход определённого количества теплоты от более нагретого тела (нагревателя) к менее нагретому (холодильнику). К. п., результатом которого является перевод определённого количества теплоты от холодильника к нагревателю за счёт работы внешних сил, называется обратным К. п. или холодильным циклом.

Тепловой двигатель — тепловая машина, превращающая тепло в механическую энергию. Использует зависимость теплового расширения вещества от температуры. Действие теплового двигателя подчиняется законам термодинамики. Для работы необходимо создать разность давлений по обе стороны поршня двигателя или лопастей турбины. Для работы двигателя обязательно наличие топлива. Это возможно при нагревании рабочего тела (газа), который совершает работу за счёт изменения своей внутренней энергии. Повышение и понижение температуры осуществляется, соответственно, нагревателем и холодильником. Был предложен вариант вечного двигателя, нарушающего 2 закон термодинамики. Если не использовать холодильник и нагреватель, а просто встроить в поршень демона Максвелла, который будет пропускать в одну сторону горячие молекулы, а в другую холодные, то поршень придёт в движение. Если дать команду демону пропускать молекулы в другом направлении, поршень спустя какое-то время двинется в обратном направлении.

Работа, совершаемая двигателем, равна:

,где:

QH — количество теплоты, полученное от нагревателя,

QX — количество теплоты, отданное охладителю.

Коэффициент полезного действия (КПД) теплового двигателя рассчитывается как отношение работы, совершаемой двигателем, к количеству теплоты, полученному от нагревателя:


Часть теплоты при передаче неизбежно теряется, поэтому КПД двигателя менее 1. Максимально возможным КПД обладает двигатель Карно. КПД двигателя Карно зависит только от абсолютных температур нагревателя(
TH) и холодильника(TX):


 

А также другие работы, которые могут Вас заинтересовать

33682. Бесконфликтная ситуация допроса 11.48 KB
  В связи с объективным характером этой ситуации тактическая задача следователя при допросе может быть сведена к одному но весьма существенному положению: не сделать ситуацию допроса конфликтной не спровоцировать своими действиями поведением конфликт с допрашиваемым. Дело в том что успех допроса как и любого иного вида человеческого общения зависит не только от объективных но и от субъективных факторов. Необдуманная форма вызова лица на допрос оказавшаяся неприятной или нежелательной для допрашиваемого длительное ожидание под дверями...
33683. ТАКТИЧЕСКИЕ ПРИЕМЫ ОЧНОЙ СТАВКИ 12.34 KB
  Задачи очной ставки: 1 общие: а проверка имеющихся доказательств; б получение новых доказательств; в установление истины по спорным обстоятельствам; 2 конкретные: а преодоление добросовестного заблуждения допрашиваемого; б разоблачение лжи одного из допрашиваемых; в разоблачение ложного алиби; г разоблачение самооговора или оговора одного допрашиваемого другим; д разоблачение инсценировок преступления; е выяснение причин происхождения существенных противоречий; ж изучение личности допрашиваемого; з проверка и оценка следственных...
33684. Тактика подготовки и проведения предъявления для опознания живых лиц в натуре и по фотографии 14.53 KB
  тактика подготовки и проведения предъявления для опознания живых лиц в натуре и по фотографии Предъявление для опознания это самостоятельное следственное действие которое состоит в отождествлении ранее воспринимаемого объекта по его мысленному образу. Цель предъявления для опознания идентификация объекта который ранее воспринимал опознающий в связи с совершением преступления. Подготовка к предъявлению для опознания является обязательным условием успеха этого следственного действия. Она включает в себя: определение конкретной цели...
33686. ПОНЯТИЕ, ВИДЫ И ЗАДАЧИ СЛЕДСТВЕННОГО ЭКСПЕРИМЕНТА 13.35 KB
  Цель следственного эксперимента – проверка и уточнение данных имеющих значение для уголовного дела. Задачи следственного эксперимента: 1 получение новых и проверка имеющихся доказательств; 2 оценка следственных версий о возможности или невозможности существования тех или иных фактов имеющих значение для дела; 3 получение от подозреваемого обвиняемого потерпевшего и свидетеля правдивых показаний; 4 восстановление в памяти участников преступления отдельных обстоятельств которые были ими забыты или по поводу которых они добросовестно...
33688. Проверка показаний на месте 12.14 KB
  Сущность данного действия заключается в воспроизведении лицом дающим показания на месте обстановки и обстоятельств исследуемого события указывании на предметы документы следы имеющие значение для расследуемого уголовного дела. Необходимость в проверке показаний на месте возникает тогда когда в показаниях допрошенного лица есть данные о месте события или о маршруте но следователь не смог установить точное местонахождение. Проверку показаний на месте можно проводить когда в показаниях допрашиваемого содержатся сведения о местонахождении...
33689. ПОНЯТИЕ И ВИДЫ ОБЫСКА. ПОДГОТОВКА И ПРОВЕДЕНИЕ ОБЫСКА 12.61 KB
  ПОДГОТОВКА И ПРОВЕДЕНИЕ ОБЫСКА Обыск – следственное действие состоящее в обследовании помещений участков местности отдельных граждан с целью отыскания и изъятия объектов имеющих значение для расследуемого уголовного дела. Виды обыска: 1 по объектам: а обыск в помещении находящемся в ведении или пользовании граждан предприятий организаций учреждений; б обыск местности; в обыск транспортных средств; г личный обыск; 2 по последовательности: а первоначальный; б повторный; 3 по времени обыска объектов: а одновременный; б...