32773

Цикл Карно и его КПД для идеального газа. Второе начало термодинамики. Независимость КПД цикла Карно от рабочего вещества. Лемма Карно

Доклад

Физика

Второе начало термодинамики. Следовательно согласно I началу термодинамики работа совершаемая двигателем равна =Q1Q2 Коэффициентом полезного действия КПД теплового двигателя называется отношение работы совершаемой двигателем к количеству теплоты полученному от нагревателя η=Q1Q2 Q1 КПД тепловой машины всегда меньше единицы η=1Q2 Q1 Следовательно невозможно всю теплоту превратить в работу. Отсюда Q2 T2≥Q1 T1 На основании этого неравенства можно прийти к понятию энтропия и второму началу термодинамики. Второе начало термодинамики ...

Русский

2013-09-05

47 KB

50 чел.

49.Цикл Карно и его КПД для идеального газа. Второе начало термодинамики. Независимость КПД цикла Карно от рабочего вещества. Лемма Карно.

 

Тепловые машины могут иметь разную конструкцию. Это может быть паровой двигатель, двигатель внутреннего сгорания, реактивный двигатель. Любой тепловой двигатель работает по замкнутому циклу и имеет нагреватель, рабочее тело двигателя и холодильник. В процессе работы теплового двигателя рабочее тело двигателя получает от нагревателя количество теплоты Q1, совершает работу A и передает холодильнику количество теплоты Q2<Q1. Для замкнутого цикла изменение внутренней энергии равно нулю (∆U=0). Следовательно, согласно I началу термодинамики, работа, совершаемая двигателем, равна A=Q1-Q2 Коэффициентом полезного действия (КПД) теплового двигателя называется отношение работы, совершаемой двигателем, к количеству теплоты, полученному от нагревателя η=Q1-Q2/Q1 КПД тепловой машины всегда меньше единицы η=1-Q2/Q1 Следовательно, невозможно всю теплоту превратить в работу. Ученые всегда стремились повысить КПД. В первой половине XIX в. французский ученый Сади Карно показал, что максимально возможное значение КПД тепловой машины равно ηmax=T1-T2/T1=1-T2/T1, где T1 - температура нагревателя, T2 - температура холодильника. Из сравнения уравнений (4.18) и (4.19) следует, что ηmax ≥ η или 1-T2/T1≥1Q2/Q1. Отсюда Q2/T2Q1/T1 На основании этого неравенства можно прийти к понятию энтропия и второму началу термодинамики. Повышение КПД тепловых двигателей и приближение его к максимально возможному значению - важнейшая техническая задача. Однако, все тепловые двигатели выделяют большое количество теплоты, что называется тепловым загрязнением, и выбрасывают в атмосферу вредные для растений и животных химические соединения.

Второе начало термодинамики — физический принцип, накладывающий ограничение на направление процессов передачи тепла между телами.

Второе начало термодинамики запрещает так называемые вечные двигатели второго рода, показывая невозможность перехода всей внутренней энергии системы в полезную работу.

Второе начало термодинамики является постулатом, не доказываемым в рамках термодинамики. Оно было создано на основе обобщения опытных фактов и получило многочисленные экспериментальные подтверждения.

Существуют несколько эквивалентных формулировок второго начала термодинамики:

Постулат Клаузиуса: «Невозможен процесс, единственным результатом которого являлась бы передача тепла от более холодного тела к более горячему» (такой процесс называется процессом Клаузиуса).

Постулат Томсона: «Невозможен круговой процесс, единственным результатом которого было бы производство работы за счет охлаждения теплового резервуара» (такой процесс называется процессом Томсона).

Эквивалентность этих формулировок легко показать. В самом деле, допустим, что постулат Клаузиуса неверен, то есть существует процесс, единственным результатом которого была бы передача тепла от более холодного тела к более горячему. Тогда возьмем два тела с различной температурой (нагреватель и холодильник) и проведем несколько циклов тепловой машины забрав тепло Q1 у нагревателя, отдав Q2 холодильнику и совершив при этом работу A = Q1Q2. После этого воспользуемся процессом Клаузиуса и вернем тепло Q2 от холодильника нагревателю. В результате получается, что мы совершили работу только за счет отъёма теплоты от нагревателя, то есть постулат Томсона тоже неверен.

С другой стороны, предположим, что неверен постулат Томсона. Тогда можно отнять часть тепла у более холодного тела и превратить в механическую работу. Эту работу можно превратить в тепло, например, с помощью трения, нагрев более горячее тело. Значит, из неверности постулата Томсона следует неверность постулата Клаузиуса.

Таким образом, постулаты Клаузиуса и Томсона эквивалентны.

Другая формулировка второго начала термодинамики основывается на понятии энтропии:

«Энтропия изолированной системы не может уменьшаться» (закон неубывания энтропии). 

Такая формулировка основывается на представлении об энтропии как о функции состояния системы, что также должно быть постулировано.

В состоянии с максимальной энтропией макроскопические необратимые процессы (а процесс передачи тепла всегда является необратимым из-за постулата Клаузиуса) невозможны.

Теорема Карно-Клаузиуса: коэффициент полезного действия тепловой машины, работающей обратимо по циклу Карно, не зависит от природы рабочего тела машины, а лишь от температуры нагревателя и температуры холодильника.


 

А также другие работы, которые могут Вас заинтересовать

10954. Формула полной вероятности 60.55 KB
  Формула полной вероятности Следствием обеих основных теорем теоремы сложения вероятностей и теоремы умножения вероятностей является так называемая формула полной вероятности. Пусть требуется определить вероятность некоторого события которое может произойти и...
10955. Повторение испытаний (Схема Бернулли) 90.31 KB
  Повторение испытаний Схема Бернулли Если производится несколько испытаний опытов причем вероятность события в каждом испытании не зависит от исходов других испытаний то такие испытания называются независимыми относительно события . В схеме Я. Бернулли рассматр
10956. Локальная теорема Муавра-Лапласа 65.77 KB
  Локальная теорема МуавраЛапласа Несмотря на элементарность формулы Бернулли при большом числе испытаний непосредственное вычисление по ней связано с большой вычислительной работой погрешностью. Разрешить эту проблему поможет локальная теорема МуавраЛапласа:
10957. Непрерывная случайная величина и плотность распределения 181.23 KB
  Непрерывная случайная величина и плотность распределения Случайная величина называется непрерывной если ее пространством элементарных событий является вся числовая ось либо отрезок отрезки числовой оси а вероятность наступления любого элементарного события р
10958. Числовые характеристики одномерной случайной величины 163.51 KB
  Числовые характеристики одномерной случайной величины Математическим ожиданием или средним значением случайной величины называется постоянная константа обозначаемая символом и определяемая равенством: 8.1 ПРИМЕР 1: Известны законы распределения СВ и чи
10959. Многомерные случайные величины 198.57 KB
  Многомерные случайные величины Очень часто результат испытания характеризуется не одной случайной величины а некоторой системой случайных величин которую называют также многомерной мерной случайной величиной или случайным вектором . Случайные величины в
10960. Условная плотность распределения 140.12 KB
  Условная плотность распределения Рассмотрим другой подход при определении вероятности попадания двумерной СВ в элементарный прямоугольник со сторонами и и устремим и к нулю. Рассмотрим вероятность попадания в элементарный прямоугольник как произведение вероятн
10961. Нормальный (гауссов) закон распределения 209.39 KB
  Нормальный гауссов закон распределения Нормальный закон распределения закон Гаусса играет исключительно важную роль в теории вероятностей. Это наиболее часто встречающийся на практике закон распределения СВ. Главная особенность выделяющая закон Гаусса состоит в
10962. Показательный (экспоненциальный) закон распределения 102.76 KB
  Показательный экспоненциальный закон распределения В теории массового случайные процессы часто распределены по показательному закону например время обслуживания требования каналом обслуживания. Непрерывная случайная величина имеет показательный экспоненциа