32774

Энтропия идеального газа при обратимых и необратимых процессах

Доклад

Физика

К определению энтропии S можно прийти на основе анализа работы тепловых машин. ∆S=∆Q T Для тепловой машины изменение энтропии нагревателя и холодильника равны: ∆S1=Q1 T1 и ∆S2=Q2 T2 Формула ∆S=∆Q T справедлива для изотермического процесса и представляет собой термодинамическое определение энтропии. Для любого процесса можно найти бесконечно малое изменение энтропии т. ее дифференциал dS=δQ T где δQ элементарная теплота В интегральной форме для любого процесса изменение энтропии равно Найдем изменение энтропии за один цикл для тепловой...

Русский

2013-09-05

33.5 KB

27 чел.

50.Энтропия идеального газа при обратимых и необратимых  процессах.

Обратимые и не обратимые процессы.  Энтропия. Второй закон термодинамики.

Второе начало термодинамики является фундаментальным законом природы. Оно охватывает самый широкий круг природных явлений и указывает направление, в котором самопроизвольно протекают термодинамические процессы.

Второе начало термодинамики, как и первое, имеет несколько формулировок.

Невозможен круговой процесс, единственным результатом которого является превращение теплоты, полученной от нагревателя, полностью в работу.

Невозможен круговой процесс, единственным результатом которого является передача теплоты от менее нагретого тела к более нагретому.

Эти формулировки показывают, что тепловые процессы являются необратимыми. Мерой необратимости процесса, мерой хаотичности является энтропия.

К определению энтропии S можно прийти на основе анализа работы тепловых машин. Если система получает тепло (Q>0) или отдает тепло (Q<0), то состояние ее меняется. Тогда, при изменении состояния системы, можно найти не саму энтропию, а только ее изменение, т. е. ∆S=∆Q/T

Для тепловой машины изменение энтропии нагревателя и холодильника равны: ∆S1=Q1/T1 и ∆S2=Q2/T2

 

Формула ∆S=∆Q/T справедлива для изотермического процесса и представляет собой термодинамическое определение энтропии. Энтропией называется термодинамическая величина, изменение которой в системе пропорционально ее тепловой энергии, деленной на абсолютную температуру. Для любого процесса можно найти бесконечно малое изменение энтропии, т. е. ее дифференциал dSQ/T, где δQ- элементарная теплота

В интегральной форме для любого процесса изменение энтропии равно

Найдем изменение энтропии за один цикл для тепловой машины. Из неравенства следует, что ∆S2≥∆S1. Полное изменение энтропии за цикл больше или равно нулю ∆S=∆S2-∆S1≥0 Знак равенства ΔS = 0 относится к обратимым процессам, которые являются бесконечно медленными процессами.

Знак неравенства ΔS > 0 относится к необратимым процессам. В реальных системах все процессы необратимы. Например, расширение газа, выравнивание температуры.

Таким образом, второе начало термодинамики формулируется и как закон возрастания энтропии. Во всех необратимых процессах в замкнутой системе энтропия всегда возрастает. Возрастание энтропии сопровождается выравниванием температуры или плотности газа. Это можно связать с порядком и беспорядком. Под порядком будем понимать сосредоточение частиц или энергии в определенном месте пространства, а под беспорядком (хаосом) - равномерное распределение их во всем объеме. Тогда возрастание энтропии при совершающихся без внешних воздействий необратимых процессах отражает природное стремление систем переходить от состояния более упорядоченного в состояние менее упорядоченное. Этот процесс сопровождается рассеянием (или диссипацией) энергии. Второе начало термодинамики определяет направленность тепловых процессов в изолированных системах, они всегда протекают в сторону роста энтропии, в сторону увеличения беспорядка. Возникновение упорядоченных структур возможно только в незамкнутых, т. е. в открытых системах. Открытой системой называется система, которая обменивается энергией и веществом с окружающей средой. В открытых системах энтропия может как возрастать, так и убывать в зависимости от знака Q/T.

В открытых системах, находящихся в неравновесном состоянии, при определенных условиях из хаоса может возникать порядок. Процесс возникновения из хаоса упорядоченных структур называется самоорганизацией. Процессы самоорганизации являются общими для живой и неживой природы.


 

А также другие работы, которые могут Вас заинтересовать

71922. Методы очистки вод от нитратов и нитритов 115 KB
  Огромное значение вода имеет в промышленном и сельскохозяйственном производстве. Общеизвестна необходимость ее для бытовых потребностей человека, всех растений и животных. Для многих живых существ она служит средой обитания.
71923. Екологічный туризм 26.96 KB
  У більшості країн світу туризм відіграє значну роль в економіці, стимулювання соціального розвитку регіонів, надходження коштів до державної скарбниці. На частку туризму припадає близько 10 відсотків світового валового національного продукту, світових інвестицій...
71924. Зоны генерации отражательного клистрона 314 KB
  Зависимость от частоты называется фазочастотной характеристикой резонатора рис. Вблизи собственной частоты резонатора зависимость от очень сильная и тем сильнее чем выше добротность резонатора.
71925. Артеріальна гіпотензія 21.87 KB
  Артеріальна гіпотонія або гіпотонія зниження систолічного та діастолічного артеріального тиску нижче нормального рівня. Артеріальна гіпотонія за механізмом розвитку тривалістю клінічними проявами симптом вкрай неоднорідний.
71928. Архитектура Древнего Египта 188.5 KB
  Каждая пирамида является частью архитектурного ансамбля включающего маленькие пирамидки цариц и заупокойный храм примыкавший к пирамиде с восточной стороны. Заупокойный храм соединялся крытым каменным проходом с нижним заупокойным храмом в долине строившимся там куда доходили воды нильских разливов.
71929. Николай I 148 KB
  В период царствования Николая I Россия участвовала в войнах: Кавказской войне 1817-1864 гг. Военизированная атмосфера Петербурга с ранних лет определила увлечение Николая военным делом особенно тем что касалось его внешней парадной стороны.