32777

Термодинамика необратимых процессов. Явления переноса в термодинамически неравновесных системах. Опытные законы диффузии, теплопроводности и внутреннего трения

Доклад

Физика

Термодинамика необратимых процессов. ТЕРМОДИНАМИКА НЕОБРАТИМЫХ ПРОЦЕССОВ неравновесная термодинамика изучает общие закономерности поведения систем не находящихся в состоянии термодинамического равновесия. процессов изменение энтропии системы dS равно: где deS = Q T внешнее изменение энтропии связанное с обратимым теплообменом с окружающей средой Qбесконечно малое колво теплоты Tабс. тра diS внутреннее изменение энтропии обусловленное самопроизвольным протеканием в системе необратимых процессов.

Русский

2013-09-05

48.5 KB

109 чел.

53.Термодинамика необратимых процессов. Явления переноса в термодинамически неравновесных системах. Опытные законы диффузии, теплопроводности и внутреннего трения.

ТЕРМОДИНАМИКА НЕОБРАТИМЫХ ПРОЦЕССОВ (неравновесная термодинамика), изучает общие закономерности поведения систем, не находящихся в состоянии термодинамического равновесия. В таких системах имеют место разнообразные неравновесные процессы (теплопередача, диффузия, электрич. ток, хим. р-ции и т. п.), к-рые являются необратимыми в термодинамич. смысле (см. Обратимые и необратимые процессы). Согласно ур-нию Клаузиуса, для неадиабатич. процессов изменение энтропии системы dS равно:

где deS = Q/T- "внешнее" изменение энтропии, связанное с обратимым теплообменом с окружающей средой (Q-бесконечно малое кол-во теплоты, T-абс. т-ра), diS- "внутреннее" изменение энтропии, обусловленное самопроизвольным протеканием в системе необратимых процессов. При этом di SО, где знак равенства относится к состоянию равновесия или к случаю обратимых (квазистатич.) процессов. Величина diS играет центр. роль в Т. н. п.

К осн. задачам Т. н. п. относят исследование балансов физ. величин (энергии, массы, энтропии и др.) при переходах, превращениях и диссипации энергии, а также установление законов эволюции макроскопич. систем. В этой связи в Т.н.п. появляется и играет важную роль время t-переменная, отсутствующая в равновесной термодинамике (равновесные в термодинамич. смысле процессы протекают бесконечно медленно). Поэтому вместо (1) рассматривается соотношение:

dS/dt = deS/dt + diS/dt,

где величина P = diS/dt наз. глобальным произ-вом энтропии (т.е. относящееся ко всему объему системы).

Различают феноменологическую Т. н. п. и статистич. теорию неравновесных процессов. Феноменологическая Т. н. п., в свою очередь, подразделяется на линейную и нелинейную теории. Обычно в Т. н. п. рассматриваются три типа систем: однородные, прерывные и непрерывные. В однородных системах в любой момент времени интенсивные св-ва (параметры состояния) - т-ра, давление, хим. потенциал - одинаковы по всему объему. Прерывные (вентильные, гетерогенные) системы состоят из двух и более однородных частей, разделенных либо границей раздела фаз, либо вентилем (напр., газы в сосудах, соединенных мембраной или капилляром), так что св-ва меняются скачком при переходе из одной части в другую. Непрерывными наз. системы, интенсивные св-ва к-рых можно считать непрерывными ф-циями координат точки внутри системы (полевых переменных) и времени.

Соотношения, характеризующие процессы переноса массы, энергии, заряда, энтропии и т.д., записываются в виде балансовых ур-ний. Такие ур-ния м. б. записаны как для непрерывных, так и для прерывных систем. В них всегда фигурируют величины двух типов, одни из к-рых трактуются как потоки, другие-как силы. Потоки характеризуют скорость переноса физ. величины (энергии, массы, энтропии и т.д.) через воображаемую единичную площадку или скорость хим. р-ции. Термодинамич. силы-это причины, порождающие потоки. Для процессов переноса в непрерывных системах силы имеют характер градиентов (т-ры, концентрации и т.п.), в прерывных - конечных разностей этих величин.

Неравновесные процессы принято подразделять на скалярные, векторные и тензорные, если потоки и силы являются соотв. скалярами, векторами или тензорами. В зависимости от этого для описания процессов нужно использовать скалярное, векторное поле или поле тензора 2-го ранга. К группе скалярных процессов относят, в частности, хим. р-ции (скорость р-ции в каждой точке внутри системы характеризуется скалярной величиной). К векторным процессам относят, напр., теплопроводность и диффузию (с ними связаны поля векторов потоков тепла и в-ва). Примером тензорного процесса служит вязкое течение. Классификация процессов по тензорным св-вам не является формальной, но связана с содержанием принципа Кюри (см. ниже). Ур-ния балансов массы, импульса, полной энергии имеют смысл законов сохранения. Баланс внутр. энергии суть первое начало термодинамики. Его можно представить в виде ур-ния:

где и, u, q-уд. локальные (относящиеся к нек-рому выделенному элементу объема) внутр. энергия, объем и кол-во тепла соотв.; p -давление; Jk- диффузионный поток k-го компонента в поле внеш. силы Fk, действующей на единицу массы k-го компонента (точка означает скалярное произведение); V-вектор скорости центра масс системы в поле внутр. напряжений; П-тензор вязких напряжений (вязкий тензор давления); (двоеточие означает двукратную свертку). Для невязких систем в поле сил тяготения последние два слагаемых обращаются в нуль, и приведенная формулировка первого начала аналогична формулировкам, принятым в равновесной термодинамике.

Явление переноса в термодинамически неравновесных системах

В термодинамических неравновесных системах возникают особые необратимые процессы, в результате которых происходит пространственный перенос энергии, массы и импульса.

Если газ находится в состоянии равновесия, макроскопические параметры в различных частях системы одинаковы. Однако если в произвольной части системы один из параметров изменился, т. е. система стала неравновесной, возникнут процессы, стремящиеся вернуть систему в равновесное состояние, и эти процессы называют явлением переноса.

В зависимости от того, какой параметр изменяется, различают:

      теплопроводность — перенос энергии;

      диффузия — перенос массы;

      вязкость (или внутреннее трение) — перенос импульса.

Теплопроводность

Если в одной области газа средняя кинетическая энергия молекул больше, чем в другой, то с течением времени вследствие постоянных столкновений молекул происходит процесс выравнивания средних кинетических энергий молекул, т. е. выравнивание температур.

Законы диффузии

Нам следует изучить перенос газов через барьер между альвеолярным воздухом и кровью. Этот перенос происходит за счет диффузии. Всего лишь 40 лет назад некоторые физиологи считали, что в легких происходит секреция кислорода в капилляры, т. е. его перемещение против градиента парциального давления. Такой процесс, требующий затрат энергии, протекает в плавательном пузыре рыбы. Однако в дальнейшем с помощью более точных методик было показано, что все газы в легких проходят через альвеолярную стенку исключительно путем пассивной диффузии.
Диффузия веществ через ткани описывается законом Фика, согласно которому скорость переноса газа через слой ткани прямо пропорциональна площади этого слоя и разнице парциального давления газа по обе его стороны и обратно пропорциональна толщине слоя. Площадь альвеолярно-капиллярного барьера в легких огромна (50—100 м
2), а толщина его менее 0,5 мкм, т. е. по своим размерам он прекрасно подходит для диффузии.

Закон внутреннего трения Ньютона

Предположение о линейной зависимости силы внутреннего трения (молекулярной вязкости) от производной скорости V по нормали к плоскости движения

Здесь τ — сила внутреннего трения, отнесенная к единице поверхности (напряжение трения); η—коэффициент вязкости, определяемый в случае газа его природой и температурой, а в случае капельной жидкости — также и давлением.


 

А также другие работы, которые могут Вас заинтересовать

17039. Використання файлів: довільний доступ у VB 6.0 121 KB
  Лабораторна робота № 17 Тема: Використання файлів: довільний доступ. Мета: Ознайомитися з принципами організації роботи з файлами у довільному доступі і використання файлових функцій у VB 6.0. Обладнання: ПК ПЗ VB 6.0 Завдання: Відкрити файл для довільного дос
17040. Керування базами даних: створення бази данних у Access 265.5 KB
  Лабораторна робота №1819 Тема: Керування базами даних: створення бази данних у Access Ціль: ознайомитись з принципами керування базами даних в VB 6.0 та розробкою бази даних як токової з використанням Microsoft Access. Обладнання: ПК ПЗ VB 6.0 Хiд роботи Послідовність викон
17041. Створення презентацій у Power Point 341.5 KB
  Лабораторна робота №20 Створення презентацій у Power Point. Робота зі звуком і фільмами у Power Point. Підготовка презентацій до демонстрації в Power Point: організація переходів. Підготовка презентацій до демонстрації в Power. Демонстрації слайдів у Power Point. Ціль: ознайомитис
17042. Операційна система Ms – Dos. Команди Ms – Dos 83.5 KB
  Практична робота №9 Тема: Операційна система Ms Dos. Команди Ms Dos. Мета: навчитися використовувати основні команди Ms Dos для роботи в командному режимі. Створювати невеликі за об'ємом текстові файли не вдаючись до можливостей текстових редакторів. Устаткування: ПК...
17043. Управління процесом завантаження ОС. Створення завантажувальної дискети 205.5 KB
  Практична робота №7. Тема: Управління процесом завантаження ОС. Створення завантажувальної дискети. Мета: Навчитися створювати завантажувальну дискету різними способами. навчитися використовувати її у разі аварійної ситуації в роботі ПК. Устаткування: ПК. Операці...
17044. Установка нового устаткування (Plug Play). Редагування властивостей типів файлів 358.5 KB
  Практична робота №8. Тема:Установка нового устаткування PlugPlay. Редагування властивостей типів файлів. Мета: Навчитися встановлювати нове устаткування з використанням майстра Установка устаткування а також редагувати властивості типів файлів. Устаткування: ПК....
17045. Конструирование одежды из натуральной и искусственной кожи, комплексных и нетканых материалов 191.5 KB
  Натуральная кожа – это материал, получаемый из шкур животных некоторых видов путем комплексного воздействия на них разнообразных физико-механических операций. Различают верхний слой натуральной кожи (лицевой) и нижний (бахтармяный - нелицевой).
17046. Робота з оболонкою Norton Commander 79.5 KB
  Практична робота №11 Тема: Робота з оболонкою Norton Commander. Мета: Ознайомитися з прийомами роботи у файлових менеджерах на прикладі оболонки Norton Commander. Устаткування: ПК. Операційна система Windows Оболонка Norton Commander. Правила ТБ. Методичні рекомендації. Використ...
17047. Створення і виконання командних файлів 58.5 KB
  Практична робота №12 Тема: Створення і виконання командних файлів. Мета: Навчитися створювати командні файли. Устаткування: ПК. Операційна система Windows. Індивідуальне завдання Створити командний файл який чистить екран; висновок поточний час; виводить поточну д