32777

Термодинамика необратимых процессов. Явления переноса в термодинамически неравновесных системах. Опытные законы диффузии, теплопроводности и внутреннего трения

Доклад

Физика

Термодинамика необратимых процессов. ТЕРМОДИНАМИКА НЕОБРАТИМЫХ ПРОЦЕССОВ неравновесная термодинамика изучает общие закономерности поведения систем не находящихся в состоянии термодинамического равновесия. процессов изменение энтропии системы dS равно: где deS = Q T внешнее изменение энтропии связанное с обратимым теплообменом с окружающей средой Qбесконечно малое колво теплоты Tабс. тра diS внутреннее изменение энтропии обусловленное самопроизвольным протеканием в системе необратимых процессов.

Русский

2013-09-05

48.5 KB

111 чел.

53.Термодинамика необратимых процессов. Явления переноса в термодинамически неравновесных системах. Опытные законы диффузии, теплопроводности и внутреннего трения.

ТЕРМОДИНАМИКА НЕОБРАТИМЫХ ПРОЦЕССОВ (неравновесная термодинамика), изучает общие закономерности поведения систем, не находящихся в состоянии термодинамического равновесия. В таких системах имеют место разнообразные неравновесные процессы (теплопередача, диффузия, электрич. ток, хим. р-ции и т. п.), к-рые являются необратимыми в термодинамич. смысле (см. Обратимые и необратимые процессы). Согласно ур-нию Клаузиуса, для неадиабатич. процессов изменение энтропии системы dS равно:

где deS = Q/T- "внешнее" изменение энтропии, связанное с обратимым теплообменом с окружающей средой (Q-бесконечно малое кол-во теплоты, T-абс. т-ра), diS- "внутреннее" изменение энтропии, обусловленное самопроизвольным протеканием в системе необратимых процессов. При этом di SО, где знак равенства относится к состоянию равновесия или к случаю обратимых (квазистатич.) процессов. Величина diS играет центр. роль в Т. н. п.

К осн. задачам Т. н. п. относят исследование балансов физ. величин (энергии, массы, энтропии и др.) при переходах, превращениях и диссипации энергии, а также установление законов эволюции макроскопич. систем. В этой связи в Т.н.п. появляется и играет важную роль время t-переменная, отсутствующая в равновесной термодинамике (равновесные в термодинамич. смысле процессы протекают бесконечно медленно). Поэтому вместо (1) рассматривается соотношение:

dS/dt = deS/dt + diS/dt,

где величина P = diS/dt наз. глобальным произ-вом энтропии (т.е. относящееся ко всему объему системы).

Различают феноменологическую Т. н. п. и статистич. теорию неравновесных процессов. Феноменологическая Т. н. п., в свою очередь, подразделяется на линейную и нелинейную теории. Обычно в Т. н. п. рассматриваются три типа систем: однородные, прерывные и непрерывные. В однородных системах в любой момент времени интенсивные св-ва (параметры состояния) - т-ра, давление, хим. потенциал - одинаковы по всему объему. Прерывные (вентильные, гетерогенные) системы состоят из двух и более однородных частей, разделенных либо границей раздела фаз, либо вентилем (напр., газы в сосудах, соединенных мембраной или капилляром), так что св-ва меняются скачком при переходе из одной части в другую. Непрерывными наз. системы, интенсивные св-ва к-рых можно считать непрерывными ф-циями координат точки внутри системы (полевых переменных) и времени.

Соотношения, характеризующие процессы переноса массы, энергии, заряда, энтропии и т.д., записываются в виде балансовых ур-ний. Такие ур-ния м. б. записаны как для непрерывных, так и для прерывных систем. В них всегда фигурируют величины двух типов, одни из к-рых трактуются как потоки, другие-как силы. Потоки характеризуют скорость переноса физ. величины (энергии, массы, энтропии и т.д.) через воображаемую единичную площадку или скорость хим. р-ции. Термодинамич. силы-это причины, порождающие потоки. Для процессов переноса в непрерывных системах силы имеют характер градиентов (т-ры, концентрации и т.п.), в прерывных - конечных разностей этих величин.

Неравновесные процессы принято подразделять на скалярные, векторные и тензорные, если потоки и силы являются соотв. скалярами, векторами или тензорами. В зависимости от этого для описания процессов нужно использовать скалярное, векторное поле или поле тензора 2-го ранга. К группе скалярных процессов относят, в частности, хим. р-ции (скорость р-ции в каждой точке внутри системы характеризуется скалярной величиной). К векторным процессам относят, напр., теплопроводность и диффузию (с ними связаны поля векторов потоков тепла и в-ва). Примером тензорного процесса служит вязкое течение. Классификация процессов по тензорным св-вам не является формальной, но связана с содержанием принципа Кюри (см. ниже). Ур-ния балансов массы, импульса, полной энергии имеют смысл законов сохранения. Баланс внутр. энергии суть первое начало термодинамики. Его можно представить в виде ур-ния:

где и, u, q-уд. локальные (относящиеся к нек-рому выделенному элементу объема) внутр. энергия, объем и кол-во тепла соотв.; p -давление; Jk- диффузионный поток k-го компонента в поле внеш. силы Fk, действующей на единицу массы k-го компонента (точка означает скалярное произведение); V-вектор скорости центра масс системы в поле внутр. напряжений; П-тензор вязких напряжений (вязкий тензор давления); (двоеточие означает двукратную свертку). Для невязких систем в поле сил тяготения последние два слагаемых обращаются в нуль, и приведенная формулировка первого начала аналогична формулировкам, принятым в равновесной термодинамике.

Явление переноса в термодинамически неравновесных системах

В термодинамических неравновесных системах возникают особые необратимые процессы, в результате которых происходит пространственный перенос энергии, массы и импульса.

Если газ находится в состоянии равновесия, макроскопические параметры в различных частях системы одинаковы. Однако если в произвольной части системы один из параметров изменился, т. е. система стала неравновесной, возникнут процессы, стремящиеся вернуть систему в равновесное состояние, и эти процессы называют явлением переноса.

В зависимости от того, какой параметр изменяется, различают:

      теплопроводность — перенос энергии;

      диффузия — перенос массы;

      вязкость (или внутреннее трение) — перенос импульса.

Теплопроводность

Если в одной области газа средняя кинетическая энергия молекул больше, чем в другой, то с течением времени вследствие постоянных столкновений молекул происходит процесс выравнивания средних кинетических энергий молекул, т. е. выравнивание температур.

Законы диффузии

Нам следует изучить перенос газов через барьер между альвеолярным воздухом и кровью. Этот перенос происходит за счет диффузии. Всего лишь 40 лет назад некоторые физиологи считали, что в легких происходит секреция кислорода в капилляры, т. е. его перемещение против градиента парциального давления. Такой процесс, требующий затрат энергии, протекает в плавательном пузыре рыбы. Однако в дальнейшем с помощью более точных методик было показано, что все газы в легких проходят через альвеолярную стенку исключительно путем пассивной диффузии.
Диффузия веществ через ткани описывается законом Фика, согласно которому скорость переноса газа через слой ткани прямо пропорциональна площади этого слоя и разнице парциального давления газа по обе его стороны и обратно пропорциональна толщине слоя. Площадь альвеолярно-капиллярного барьера в легких огромна (50—100 м
2), а толщина его менее 0,5 мкм, т. е. по своим размерам он прекрасно подходит для диффузии.

Закон внутреннего трения Ньютона

Предположение о линейной зависимости силы внутреннего трения (молекулярной вязкости) от производной скорости V по нормали к плоскости движения

Здесь τ — сила внутреннего трения, отнесенная к единице поверхности (напряжение трения); η—коэффициент вязкости, определяемый в случае газа его природой и температурой, а в случае капельной жидкости — также и давлением.


 

А также другие работы, которые могут Вас заинтересовать

26267. Понятийный аппарат агротехнологий и их классификация 86.5 KB
  Усвоение базовых понятий агротехнологий их классификации и места в адаптивноландшафтных системах земледелия. Агротехнологии рассматриваются как составная часть адаптивноландшафтных систем земледелия. Агротехнологии как составная часть адаптивноландшафтных систем земледелия. Классификация агротехнологий как составная часть адаптивноландшафтных систем земледелия Современные агротехнологии представляют собой комплексы технологических операций по управлению продукционным процессом сельскохозяйственных культур в агроценозах с целью достижения...
26268. Контроль сорной растительности в агроценозах 233.5 KB
  Рассматриваются наиболее типичные условия засоренности агроценозов экономические пороги вредоностности сорняков предупредительные и истребительные методы контроля сорняков в том числе агротехнические биологические и химические. Контроль сорной растительности в агроценозах Среди всех агрономических проблем одна из самых сложных контроль сорняков причем при снижении интенсивности обработки почвы она обостряется. Методы контроля сорняков подразделяются на предупредительные и истребительные. Предупредительные методы контроля сорняков Они...
26269. Регулирование минерального питания растений в процессе вегетации 109 KB
  Цель тканевой диагностики выявление необходимости ранней азотной подкормки. Азотные подкормки проводят при показаниях прибора ОАП1 от 1 до 4 баллов или при бледнорозовой окраске индикаторной бумаги. При 41 55 балла применение поздней азотной некорневой подкормки улучшает качество зерна. Необходимость подкормки для улучшения качества зерна определяют по количеству общего азота в листьях пшеницы в фазы колошения цветения.
26270. Особенности почвенно-ландшафтного картографирования и формирования агроГИС для проектирования агротехнологий 72.5 KB
  Сформировать представление о почвенноландшафтном картографировании земель и умение пользоваться агроГИС для проектирования агротехнологий. Ключевые слова: агропроизводственные группировки почв; почвенноландшафтные карты АгроГИС электронные картслои лцифровка GPS Геоморфологическая карта карта СПП карта видов земель базы данных. Разработать карту агроэкологических видов земель в агроГИС на основе материалов почвенноландшафтного картографирования и набора тиматических электронных карт земельного массива фонды кафедры почвоведения...
26271. Абиотические и биотические факторы стресса, влияющие на продуктивность растений 602 KB
  Лекция: Абиотические и биотические факторы стресса влияющие на продуктивность растений Цели и задачи. Технологические повреждения растений. Под стрессом понимают нагрузку на организм которая вызывает сначала дестабилизацию потом нормализацию и повышение устойчивости а при превышении приспособляемости адаптируемости и способности соответствующих механизмов к компенсации отрицательного влияния отмирание целых растений или их частей. С одной стороны стресс мешает максимальной реализации генетического потенциала культурных растений но с...
26272. Применение сенсорной техники при дифференцированном внесении гербицидов (сенсоры сорняков) 120 KB
  Если имеется гетерогенное распределение сорняков при периодической борьбе с сорняками дифференциация расхода гербицида приносит экономические преимущества экономия производственных средств. Внесение гербицидов по потребности требует при дозировке ориентироваться на наличие сорняков. Это предполагает мелкоплощадное установление наличия сорняков.
26273. Точное земледелие 418 KB
  GPSприёмник и бортовой компьютер с программным обеспечением. Например с помощью мобильного радиоуправляемого самолета смонтированных на нем GPSприемника и видеокамеры можно получить информацию о распределении сорняков в пределах заданного поля. Наличие же GPSприемников совершенно необходимо для рассмотренного выше режима offline . Этапы 12 выполняются по стандартным методикам с использованием мобильного GPSнавигатора.
26274. Урожайность яровой пшеницы (т/га) на выщелоченных черноземах в производственных опытах СибНИИЗХим, Новосибирская область 263.5 KB
  Порядок формирования технологий возделывания сельскохозяйственных культур, их региональные и федеральные регистры. Наборы технологий разрабатывают применительно к различным агроэкологическим группам земель, для разных уровней интенсификации производства и категорий товаропроизводителей на основе нормативов.
26275. Архивное законодательство в 2000-е гг 56 KB
  Последнему непосредственно подчинены 15 федеральных государственных архивов Архивы в системе архивной службы РФ Федеральному архивному агентству непосредственно подчиняются 15 федеральных государственных архивов Всероссийский научноисследовательский институт документоведения и архивного дела ВНИИДАД и 1 обслуживающая организация.2004 Положение о ФАА положение регламентирует отношения сроки сферу использования сеть архивов обязанности сторон отраслевые фонды имеющие право постоянного хранения документов. принимает решение о выдаче...