3305

Методы получения 3-амино-4-(5-R-1,3,4-оксадиазол-2-ил) фуразанов и их физико–химические свойства

Контрольная

Химия и фармакология

Исследования в области поиска эффективных методов получения гетероциклических веществ для изучения связи «структура-свойство». 1,3,4-оксадиазольные основания вошли в практику терапии ряда патологических заболеваний вследствие их способности к образованию одного из универсальных регуляторов клеточного метаболизма – оксида азота...

Русский

2015-01-16

197.5 KB

8 чел.

Реферат

  В работе изучены методы получения 3-амино-4-(5-R-1,3,4-оксадиазол-2-ил) фуразанов и их физико – химические свойства. Структура всех полученных соединений доказана с помощью спектроскопии ЯМР 1Н, ИК и подтверждена элементным анализом.

Ключевые слова: фуразан, аминофуразан, 1,3,4-оксадиазол.


Введение

К настоящему времени накоплен огромный экспериментальный материал по химии производных фуразана и 1,3,4-оксадиазола. Производные 1,3,4-оксадиазола находят применение в фармации как антитуберкулезные препараты, в производстве азокрасителей, в цветной фотографии и получения термостойких полимерных материалов.

1,3,4-оксадиазольные  основания вошли в практику терапии ряда патологических заболеваний вследствие их способности к образованию одного из универсальных регуляторов клеточного метаболизма – оксида азота. С другой стороны, использование 1,3,4-оксадиазолов позволяет осуществить переход к азотсодержащим, зачастую труднодоступным, гетероциклическим соединениям.

Исследования в области поиска эффективных методов получения гетероциклических веществ для изучения связи «структура-свойство» является актуальной задачей и представляет практический интерес.

1.Аналитический обзор

Гетероциклические соединения занимают важное место в современной органической химии, а так же в медицине, физике, агрохимии и материаловедении. В последние годы среди широкого спектра гетероциклических соединений внимание химиков-органиков, фармакологов, технологов привлекли 1,3,4-оксадиазолы. Это связано не только с общим прогрессом в изучении различных циклизаций, но и с уникальной способностью 1,3,4-оксадиазольного кольца к превращению в другие гетероциклические соединения, а также с поисками биологически активных препаратов среди соединений этого ряда.

1.1. Методы получения 1,3,4-оксадиазолов

1.1.1. Формирование цикла из производных гидразидов

Анализ литературных данных показал, что образование 1,3,4-оксадиазольного цикла проводят чаще всего двумя способами:

Дегидратацией соответствующих диацилгидразонов

Из за жестких реагентов применяемых при дегидратации, возникла необходимость поиска новых, более мягких условий проведения процесса.

Был разработан интересный синтез симметричных 2,5-диарил-1,3,4-оксадиазолов. Он состоит в нагревании ароматической кислоты с дигидрохлоридом гидразина в молярном соотношении 2:1 со смесью ортофосфорной кислоты, пентаоксида и оксихлорида фосфора при 140 0С в течение 2 часов. Механизм реакции основан на взаимодействии ароматических кислот с гидразином и оксихлоридом фосфора, что приводит к образованию 1,2-диарилгидразинов. Затем последнее вступают в реакцию с оксихлоридом или пентаоксидом фосфора с получением 2,5-диарил-1,3,4-оксадиазолов с хорошим выходом(60 – 90%).

Так же 1,3,4-оксадиазолы были получены путем обработки диацилгидразинов диметилсульфатом в присутствии триэтиламина при комнатной температуре в течении 16 – 20 часов.

Был разработан метод для циклизации диацилгидразинов в мягких условиях с использованием ангидрида трифторуксусной кислоты в качестве реагента. 1,3,4-оксадиазолы были получены в дихлорметане при умеренных температурах (от -10 0С до окружающей среды) под воздействием трифторуксусной кислоты в присутствии пиридина.

Гетероциклические соединения обычно используются как каркасы для расположения формакофоров, расположенных так, что бы обеспечить мощное и  селективное действие лекарства. В особенности это относится к пятичленным гетероциклам, которые обладают широким спектром интересной биологической активности. В этой семье 1,3,4-оксадиазолы были использованы в качестве “привилегированных” каркасов для получения веществ интересных во многочисленных терапевтических областях, таких как противовоспалительных, противомикробных, противосудорожных и антигипертензивных.

Был описан региоселективный реагент на основе метода реакции циклизации. Тиосемикарбазид подвергают воздействию винил хлорида и п-толуолсульфонилхлоридом, триэтиламина в N-метил-2-пироллидоне, с получением соответствующего 2-амино-1,3,4-оксадиазола или 2-амино-1,3,4-тиодиазола. Основной скелет полученного 2-амина-1,3,4-оксадиазола реагирует с различными элекрофилами, такими как алкилгалогенид, галогенангидрид кислот и сульфонил хлоридом с хорошими выходами.

Исходный тиосемикарбозид был получен из изоцианата. Его обработка с различными ацилгидразидами в присутствии триэтиламина при комнатной температуре приводит к образованию соотвествующего тиосемикарбазида.

Окислением ацилгидразонов соответствующих альдегидов

В качестве окислителей используют I2 в щелочной среде, PbO2 в уксусной кислоте, KBrO3 и церий – аммоний нитрат.

Молекулярный йод играет большую роль в органическом синтезе, так как он легко доступен, не дорогой и мало токсичный реагент. Он успешно применяется для синтеза индола, учитывая этот факт его так же можно использовать для циклизации гидразонов в 1,3,4-оксадиазолы. Исходный гидразон был получен конденсацией 4-метилбензальдегида с бензогидразидом в этаноле при кипячении с обратным холодильником с выходом 90%. Окислительная циклизация проводилась молекулярным йодом в присутствии карбоната цезия. Исследования показали, что DMSO является наиболее эффективным растворителем для получения 1,3,4-оксадиазола с выходом 84%. Оптимальная температура 1000С. Дальнейшие исследования показали, что карбонат калия в этих условиях приводит к целевому продукту с выходом  95%. Использование органических оснований приводит к снижению выхода.

1.1.2. Другие методы

1. Конденсация N-ацилгидразинов с ортомуравьиным эфиром

2. Конденсация N-ацилгидразинов с гидрохлоридами иминоэфирами

3. Конденсация ацилхлорида с гидразин гидратом

BF3Et2O способствовало циклодегидратации из диацилгидразинов, приводя к симметричным 2,5-дизамещенным 1,3,4-оксадиазолам с хорошим выходом.

4. Из других гетероциклов (реакция рециклизации)

1.2. Физико – химические свойства 1,3,4-оксадиазолов

1,3,4-Оксадиазол и его производные хорошо растворим в большинстве органических растворителей (низшие 2-алкил- и 2,5-диалкил-1,3,4-оксадиазолы растворимы в воде); образуют комплексные соединения с AgNO3 и HgCl2; в кислой среде могут проявлять люминесцентные свойства; многие производные 1,3,4-оксадиазола обладают высокой термической стабильностью.

1.3. Химические свойства 1,3,4-оксадиазолов

1,3,4-оксадиазолы являются слабыми основаниями. Таким образом при их окислении, уксусная кислота играет роль растворителя, а не протонирующего агента.

Алкилирование  2-трифторацетамидо-1,3,4-оксадиазолов региоселективно дает эндо-N-производные:

При нуклеофильной атаке на атом углерода в кольце, основное направление реакции С-Alk-1,3,4-оксадиазол. Когда сильное основание используют в качестве нуклеофильного агента, атака на атом углерода в кольце может предшествовать депротонированию метиленовой группы, присоединенной к кольцу.  Обработка 2-метил-5-фенил-1,3,4-оксадиазола бутиллитием в отсутствии алкилирующего агента привело к образованию димера, в котором один из колец оксадиазола затем открыли, в результате чего получали соответствующий N-бензоилированный гидразон.

Очень часто нуклеофильная атака на атом углерода в кольце приводит к расщеплению кольца и образованию алициклических промежуточных продуктов, которые рециклизуются в триазолы.

Гидролиз происходит аналогично действию нуклеофильных реагентов и приводит к расщеплению цикла.

1.4. Области применения 1,3,4-оксадиазолов

Введение антибиотиков в химиотерапию бактериальных инфекций в середине прошлого века произвело переворот в медицине, резко снизив смертность от бактериальных заболеваний. Тем не менее, распространение и злоупотребление антибиотиками помогло появлению бактериальной устойчивости, в результате чего популяции бактерий разработали защитные механизмы против большинства антибиотиков.

Золотистый стафилококк, часто приводится в качестве основного возбудителя заболеваний, который становится более опасным и устойчивым к антибиотикам и основным распространителем инфекционных заболеваний во всем мире. Легкость, с которой золотистый стафилококк приобретает устойчивость практически ко всем антибиотикам,  в данный момент вызывает большое беспокойство.

Также в литературных источниках сообщалось о фунгицидном, противовоспалительным, седативном, противосудорожным действием. Многие оксадиазолы обладают гербецидной и инсектицидной активностью. 1,3,4-оксадиазолы являются важной группой гетероциклических соединений для медицинской химии.

Описаны синтез и свойства жаропрочных полиазометиленов, содержащих 2,5-дизамещенные оксадиазольные фрагменты, являются изоляторами при легировании полупроводников йодом. Полимеры содержащие 1,3,4-оксадиазольные единицы проявляют хорошие теплофизические свойства по сравнению с другими описанными в литературе соединениями. Некоторые оксадиазоловые полимеры получают и исследуют в связи с их электротранспортной способностью и люминесцентными свойствами.

Сопряженные системы, содержащие 2,5-дизамещенные-1,3,4-оксадиазолы часто флуоресцируют, что делает их потенциально полезными в качестве лазерных красителей, оптических отбеливателей, сцинтилляторов и электрофотографических фоторезисторов. В частности полимеры и макромономеры, содержащие 1,3,4-оксадиазольные сегменты, были синтезированы с целью создания синих светоизлучающих диодов.   

Экспериментальная часть.

Общая методика получения гидразидов

В стеклянный стакан засыпалют 3 г (0,02 моль) гидразида АФК, заливают 60 мл изопропилового спирта и нагревают на водяной бане до кипения. При кипячении приливают расчетное количество альдегида и каталитическое количество соляной кислоты. Кипятят в течение 10 минут при перемешивании. Выпавший осадок отфильтровывают, промывают изопропиловым спиртом и высушивают.

Продукты:

4-амино-N’-[(4-метоксифенил)метилен]фуразан-3-карбогидразид

Выход продукта 3,99 г (76%). Т.пл. 173 – 1740С.

4-амино-N’-[(3,4-диметоксифенил)метилен]фуразан-3-карбогидразид

Выход продукта 10,22 г (99%). Т.пл. 187 – 189 0С.

N’,N’’-(этан-1,2-диилиден)бис(4-амино-фуразан-3-карбогидразид)

Выход продукта 3,13 г (96%). Т.пл. 240 с разложением

4-амино-N’-[(2-хлорфенил)метилен]фуразан-3-карбогидразид

Выход продукта 2,26 г (43%). Т.пл. 158 – 160 0С.

4-амино-N’-фенилметилен-фуразан-3-карбогидразид

Выход продукта 13,42 г (83%). Т.пл. 184 – 185 0С.

4-амино-N’-[(3-этокси-4-гидроксифенил)метилен]фуразан-3-карбогидразид

Выход продукта 3,60 г (62%). Т.пл. 210 – 213

4-[5-(4-метоксифенил)-1,3,4-оксадиазол-2-ил]фуразан-3-амин

1 методика

В колбу на 50 мл засыпали 2 г (0,007 моль) 4-амино-N’-[(4-метоксифенил) метилен]фуразан-3-карбогидразида и залили 20 мл метанола. При перемешивании дозировали  2,7 г фенилиодозоацетата, по окончании экзотермического эффекта оставляем реакционную массу перемешиваться 2 дня. Мониторинг по ТСХ (1 – 3ч). Реакционную массу фильтруют, промывают 15 мл метанола. Иодбензол экстрагируют 20 мл четыреххлористым углеродом. Делительной воронкой разделяем фазы. Органический слой разбавляем в 60 мл воды. Образуется белая суспензия, осадок фильтруем и сушим. Выход продукта 1,26 г (48%). Т.пл. 223 – 225 0С.

2 методика

В колбу на 50 мл засыпают 2 г (0,007 моль)  4-амино-N’-[(4-метоксифенил)метилен]фуразан-3-карбогидразида, заливаем 20 мл уксусной кислоты и засыпаем 2 г диоксида свинца. Реакционную массу кипятим 1,5 часа, мониторинг по ТСХ. Осадок фильтруем, маточник разбавляем в 60 мл воды и охлаждаем в холодильнике. Выпавший осадок фильтруем и сушим. Выход продукта 0,42 г (23%). Т.пл. ???

4-[5-(3,4-диметоксифенил)-1,3,4-оксадиазол-2-ил]фуразан-3-амин

1 методика

В колбу на 50 мл засыпают 2 г (0,007 моль) 4-амино-N’-[(3,4-диметоксифенил)метилен]фуразан-3-карбогидразида, заливают 20 мл метанола, дозируют при перемешивании 2,4 г фенилиодозоацетата. По окончании экзотермического эффекта приливают 10 мл трифторуксусной кислоты. Реакционная масса перемешивается при комнатной температуре. Мониторинг по ТСХ. Реакционную массу разбавляем 60 мл воды, осадок фильтруем и сушим. Выход продукта 0,81 г (40%). Т.пл. 204 – 206 0С.

2 методика

В колбу на 50 мл засыпают 2 г (0,007 моль) 4-амино-N’-[(3,4-диметоксифенил)метилен]фуразан-3-карбогидразида, заливают 20 мл диметилсульфоксида, дозируют при перемешивании 2,4 г фенилиодозоацетата. По окончании экзотермического эффекта реакционную массу кипятят 10ч при перемешивании. Мониторинг по ТСХ. Реакционную массу разбавляем 60 мл воды, осадок фильтруют и сушат. Выход продукта 1,20 г (40%). Т.пл. 182 – 185 0С.

3 методика

В колбу на 50 мл засыпают 2 г (0,007 моль) 4-амино-N’-[(3,4-диметоксифенил)метилен]фуразан-3-карбогидразида, заливают 30 мл диоксана, дозируют при перемешивании 2,4 г фенилиодозоацетата. По окончании экзотермического эффекта реакционную массу греют 14ч на водяной бане при перемешивании. Мониторинг по ТСХ. Реакционную массу разбавляют 90 мл воды и 30 мл четыреххлористого углерода, осадок фильтруют, промывают 20 мл четыреххлористого углерода, перекристаллизовывают из ацетонитрила  и сушат. Выход продукта 0,47 г (20%). Т.пл. 208 – 210 0С.

4,4'-([2,2'-би(1,3,4-оксадиазол)]-5,5'-диил)бис(фуразан-3-амин)

1 методика

В колбу на 50 мл засыпают 2 г (0,006 моль)  N’,N’’-(этан-1,2-диилиден)бис(4-амино-фуразан-3-карбогидразида), заливают 20 мл метанола, дозируют при перемешивании  4.6 г фенилиодозоацетата. По окончании экзотермического эффекта реакционную массу кипятят 8ч при перемешивании. Мониторинг по ТСХ. Реакционную массу разбавляем 60 мл воды, осадок фильтруют и сушат. Выход продукта 0,7 г (38%). Т.пл. 229 – 230 0С с разложением.

2 методика

В колбу на 50 мл засыпают 2 г (0,006 моль)  N’,N’’-(этан-1,2-диилиден)бис(4-амино-фуразан-3-карбогидразида), заливают 30 мл диоксана, дозируют при перемешивании  4.6 г фенилиодозоацетата. По окончании экзотермического эффекта реакционную массу кипятят 6ч при перемешивании. Мониторинг по ТСХ. Реакционную массу разбавляем 90 мл воды, добавляют 30 мл четыреххлористого углерода, осадок фильтруют и сушат. Выход продукта 0,75 г (41%). Т.пл. 227 – 230 0С с разложением.

3 методика

В колбу на 50 мл засыпают 2 г (0,006 моль)  N’,N’’-(этан-1,2-диилиден)бис(4-амино-фуразан-3-карбогидразида), заливают 30 мл диметилформамида, дозируют при перемешивании  4.6 г фенилиодозоацетата. По окончании экзотермического эффекта реакционную массу нагревают на водяной бане 20ч при перемешивании. Мониторинг по ТСХ. Реакционную массу разбавляем 90 мл воды, добавляют 30 мл четыреххлористого углерода, осадок фильтруют и сушат. Выход продукта 0,08 г (4%). Т.пл. 225 – 229 0С с разложением.

4 методика

В колбу на 50 мл засыпают 2 г (0,006 моль)  N’,N’’-(этан-1,2-диилиден)бис(4-амино-фуразан-3-карбогидразида), заливают 40 мл уксусной кислоты, засыпают при перемешивании  3,3 г диоксида свинца. Реакционную массу нагревают на водяной бане 9ч при перемешивании. Мониторинг по ТСХ. Реакционную массу фильтруют, маточник разбавляют 80 мл воды и ставят в холодильник, осадок фильтруют и сушат. Выход продукта 0,57 г (31%). Т.пл. 228 – 230 0С с разложением.

4-[5-(2-хлорфенил)-1,3,4-оксадиазол-2-ил]фуразан-3-амин

В колбу на 50 мл засыпают 3 г (0,01 моль)  4-амино-N’-[(2-хлорфенил)метилен]фуразан-3-карбогидразида, заливают 30 мл диоксана, засыпают при перемешивании  8,0 г фенилиодозоацетата. По окончании экзотермического эффекта реакционную массу нагревают на водяной бане 9ч при перемешивании. Мониторинг по ТСХ. Реакционную массу фильтруют, маточник разбавляют 80 мл воды и ставят в холодильник, осадок фильтруют и сушат. Выход продукта 2 г (76%). Т.пл. 140 – 141 0С.

4-[5-(2,4-дихлорфенил)-1,3,4-оксадиазол-2-ил]фуразан-3-амин

1 методика

В колбу на 50 мл засыпают 2 г (0,007 моль)  4-амино-N’-[(2,4-дихлорфенил)метилен]фуразан-3-карбогидразид, заливают 40 мл уксусной кислоты, засыпают при перемешивании  1,8 г диоксида свинца.  Реакционную массу нагревают на водяной бане 3ч при перемешивании. Мониторинг по ТСХ. Реакционную массу фильтруют, маточник разбавляют 80 мл воды и ставят в холодильник, осадок фильтруют и сушат. Выход продукта 0,08 г (4%). Т.пл. 195 – 200 0С.

2 методика

4-[5-(5-фенил)-1,3,4-оксадиазол-2-ил]фуразан-3-амин

1 методика

В колбу на 50 мл засыпают 2 г (0,009 моль)  4-амино-N’-фенилметилен-фуразан-3-карбогидразида, заливают 30 мл диоксана, засыпают при перемешивании  3,1 г фенилиодозоацетата. По окончании экзотермического эффекта реакционную массу кипятят 8ч при перемешивании. Мониторинг по ТСХ. Реакционную массу фильтруют, маточник разбавляют 90 мл воды и ставят в холодильник, осадок фильтруют, перекресталлизовывают из ацетонитрила и сушат. Выход продукта 1,64 г (80%). Т.пл. 167 – 170 0С.

2 методика

В колбу на 50 мл засыпают 2 г (0,009 моль)  4-амино-N’-фенилметилен-фуразан-3-карбогидразида, заливают 40 мл уксусной кислоты, засыпают при перемешивании  2,28 г диоксида свинца. Реакционную массу кипятят 4,5ч при перемешивании. Мониторинг по ТСХ. Реакционную массу фильтруют, маточник экстрагируют 90 мл этилацетата, который отделяют на делительной воронке, промывают водой, отделяют этилацетат и отгоняют под вакуумом. Выход продукта 0,21 г (9%). Т.пл. 180 – 186 0С.

4-[5-(4-аминофуразан-3-ил)-1,3,4-оксадиазол-2-ил]-2-этоксифенол

В колбу на 50 мл засыпают 2 г (0,007 моль)  4-амино-N’-[(3-этокси-4-гидроксифенил)метилен]фуразан-3-карбогидразида, заливают 20 мл уксусной кислоты, засыпают при перемешивании  1,8 г диоксида свинца.  Реакционную массу нагревают на водяной бане 5ч при перемешивании. Мониторинг по ТСХ. Реакционную массу фильтруют, маточник разбавляют 60 мл воды и ставят в холодильник, осадок фильтруют и сушат. Выход продукта 1,68 г (83%). Т.пл. 247 – 250 0С с разложением.

Приложения

Приложение А

Охрана труда и окружающей среды

Раздел «Охрана труда и окружающей среды» очень важен, так как анализ условий труда, технологического процесса, применяемых и получаемых продуктов с точки зрения возможности возникновения в процессе синтеза опасностей и вредностей позволяет определить опасные участки производства, выявить возможные опасные ситуации и разработать меры их предупреждения и ликвидации.

Настоящая работа проводилась в лаборатории № 26 кафедры ХТОСА.

Характеристика опасных и вредных производственных факторов

Опасные и вредные производственные факторы разделяются по природе воздействия на следующие группы: физические, химические, биологические и психофизические. В данной работе имеются только физические и химические факторы.

К физически опасным факторам относятся: шум (уровень шума на рабочем месте не должен превышать 50Дб, при работе принтера - 75Дб); вибрация; статическое электричество (поверхностный статический потенциал не более 500 В), создаваемое при работе данного оборудования; повышенные и пониженные температуры поверхностей оборудования.

    Сведения о химических факторах представлены в таблице 1.


 

А также другие работы, которые могут Вас заинтересовать

16605. ИССЛЕДОВАНИЕ ЭЛЕКТРОННЫХ УСТРОЙСТВ, ПОСТРОЕННЫХ НА ОСНОВЕ ОПЕРАЦИОННОГО УСИЛИТЕЛЯ К140УД1408 336.61 KB
  Отчет по лабораторной работе № 1 макет № 18 по дисциплине Электротехника электроника и схемотехника на тему: ИССЛЕДОВАНИЕ ЭЛЕКТРОННЫХ УСТРОЙСТВ ПОСТРОЕННЫХ НА ОСНОВЕ ОПЕРАЦИОННОГО УСИЛИТЕЛЯ К140УД1408 Цель работы Изучение возможностей практическог...
16606. Исследование усилителя, построенного на основе микросхемы К118УН1 235.75 KB
  Отчет по лабораторной работе №3 по дисциплине Электротехника электроника и схемотехника на тему: Исследование усилителя построенного на основе микросхемы К118УН1 Цель работы Изучение принципов построения транзисторных усилителей устройств с резис...
16607. ИССЛЕДОВАНИЕ КОМПЕНСАЦИОННОГО СТАБИЛИЗАТОРА НАПРЯЖЕНИЯ 112.73 KB
  ОТЧЕТ о лабораторной работе №6 по курсу Электроника ИССЛЕДОВАНИЕ КОМПЕНСАЦИОННОГО СТАБИЛИЗАТОРА НАПРЯЖЕНИЯ Цель работы Исследование принципа построения и основных характеристик компенсационного стабилизатора напряжения Схемы Принципи...
16608. Изучение Программы Libedit пакета Orcad 11.99 KB
  Лабораторная работа 1. Изучение Программы Libedit пакета Orcad. Цель работы: изучить назначение возможности и основные команды программы Libedit. Порядок выполнения работы: 1. Открыть подкаталог exe каталога Orcad и запустить на выполнение программу libedit.exe. 2. Внимател
16609. Создание библиотеки элементов пакета Orcad 13.93 KB
  Лабораторная работа 2. Создание библиотеки элементов. Цель работы: научиться создавать библиотеку собственных схемных элементов с помощью программы LIBEDIT на примере создания резистора конденсатора диода транзистора. Порядок выполнения работы: 1. Запустить на
16610. Редактирование стандартных библиотечных элементов пакета Orcad 12.39 KB
  Лабораторная работа 3. Редактирование стандартных библиотечных элементов. Цель работы: получение навыков редактирования готовых элементов библиотек импортирование элемента из библиотеки изменение элементов библиотеки экспортирование элементов в собственн
16611. Работа с макрокомандами пакета Orcad 12.96 KB
  Лабораторная работа 4. Работа с макрокомандами. Цель работы: получение навыков работы с макросами макрокомандами. Использование встроенных макросов создание вызов сохранение собственных макрокоманд. Порядок выполнения работы: 1. Запустить на выполнение прогр
16612. Изучение команды LIBRARY программы PCB пакета Orcad 14.36 KB
  Лабораторная работа 5. Изучение команды LIBRARY программы PCB. Цель работы: изучить назначение возможности и основные команды пункта меню Library программы PCB пакета ORCAD. Порядок выполнения работы: 1. Запустить на выполнение программу pcb.exe находящуюся в подкаталоге EXE катал...
16613. Разработка корпусов схемных элементов пакета Orcad 12.88 KB
  Лабораторная работа 6. Разработка корпусов схемных элементов. Цель работы: получение навыков создания корпусов элементов принципиальных схем средствами программы PCB разработанных ранее с помощью программы LIBEDIT. Порядок выполнения работы: 1. Запустить на выполнени